Issue |
MATEC Web Conf.
Volume 210, 2018
22nd International Conference on Circuits, Systems, Communications and Computers (CSCC 2018)
|
|
---|---|---|
Article Number | 02053 | |
Number of page(s) | 6 | |
Section | Systems | |
DOI | https://doi.org/10.1051/matecconf/201821002053 | |
Published online | 05 October 2018 |
Electro-mechanical analysis of a multilayer piezoelectric cantilever energy harvester upon harmonic vibrations
Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
* Corresponding author: majer@vutbr.cz
This paper addresses an important issue of the individual layer thickness influence in a multilayer piezo composite on electro-mechanical energy conversion. The use of energy harvesting systems seems to be very promising for applications such as ultra-low power electronics, sensors and wireless communication. The energy converters are often disabled due to a failure of the piezo layer caused by an excessive deformation/stresses occurring upon the operation. It is thus desirable to increase both reliability and efficiency of the electromechanical conversion as compared to standard concepts. The proposed model of the piezoelectric vibration energy harvester is based on a multilayer beam design with active piezo and protective ceramic layers. This paper presents results of a comparative study of an analytical and numerical approach used for the electro-mechanical simulations of the multilayer energy harvesting systems. Development of the functional analytical model is crucial for the further optimization of new (smart material based) energy harvesting systems, since it provides much faster response than the numerical model.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.