Issue |
MATEC Web Conf.
Volume 208, 2018
2018 3rd International Conference on Measurement Instrumentation and Electronics (ICMIE 2018)
|
|
---|---|---|
Article Number | 03005 | |
Number of page(s) | 4 | |
Section | Modern Electronic System & Measurement and Control Technology | |
DOI | https://doi.org/10.1051/matecconf/201820803005 | |
Published online | 26 September 2018 |
Simulation Studies of a Trench MOS Device Structure with Small Figures of Merit
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China
We proposed a vertical high permittivity trench power MOS (HKTMOS) device with alternating N&P drift region and high permittivity (HK) trench sandwiched in between. The unique structure guarantees uniform potential distribution for wide voltage range at block state owing to both HK potential modulation effect and superjunction (SJ) charge balance. The specific on-resistance (Rons) of HKTMOS is in orders of magnitude lower than the SJ counterparts at the on state because of the strong accumulation effect brought by HK trench. Although the gate charge also significantly rises because of the accumulation, the figures of merit (FOM) of HKTMOS still reduces considerably than the SJ under same BV. An expression for FOM is derived demonstrating that the FOM of HKTMOS is proportional to the square of HK trench depth, which agrees on with simulation results well. The simulation results indicate that within the BV range of 500~2000V, the Rons and FOM of HKTMOS are in 1~2 orders of magnitude lower and 17.4%~44.1% of SJ, respectively under the same BV condition. Furthermore, HKTMOS also demonstrates better charge imbalance tolerance than SJ.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.