Issue |
MATEC Web Conf.
Volume 189, 2018
2018 2nd International Conference on Material Engineering and Advanced Manufacturing Technology (MEAMT 2018)
|
|
---|---|---|
Article Number | 10006 | |
Number of page(s) | 10 | |
Section | Bio & Human Engineering | |
DOI | https://doi.org/10.1051/matecconf/201818910006 | |
Published online | 10 August 2018 |
Smart disaster prediction application using flood risk analytics towards sustainable climate action
Technological Institute of the Philippines, Manila, Philippines
* Corresponding author: Orozco.michael@uphsl.edu.ph
Disaster prediction devices for early warning system are used by many countries for disaster awareness. This study developed smart disaster prediction application using microcontrollers and sensors to analyze the river water level for flood using flood risk analytics. Specifically, it monitors the river water level, water pressure and rain fallusing microcontroller, applying statistical modeling algorithms for river flood prediction, and monitor flood in a web-based system with SMS notification and alarm to the community as an early warning. The researchers used the system development method to measure the prototype feasibility study. The researchers applied the statistical modeling algorithm as the data can be observed from time to time or on a daily basis for the predictive analytics. Based on the 7-days observation result, rainfall resulted in precipitation average of 10.96 mm, water pressure with an average of 40.92 pound per square inch (psi) and water level averaged 138.78 cm. The tropical depression during the 7 days’observation reflected the average data result from the sensors as the target of the study. The result of the prototype device used the City Disaster Risk and Reduction management office (CDRRMO) as history logs for a flood risk and it was proven accurate which makes a good use for disaster prediction.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.