Issue |
MATEC Web Conf.
Volume 189, 2018
2018 2nd International Conference on Material Engineering and Advanced Manufacturing Technology (MEAMT 2018)
|
|
---|---|---|
Article Number | 03020 | |
Number of page(s) | 6 | |
Section | Cloud & Network | |
DOI | https://doi.org/10.1051/matecconf/201818903020 | |
Published online | 10 August 2018 |
Asynchronous differential evolution with selfadaptive parameter control for global numerical optimization
1
Department of Computer Engineering, Sungkyunkwan University, Republic of Korea
2
CTO Department, LG Electronics, Republic of Korea
* Corresponding author: yeonju.lee@lge.com
In this paper, we propose an extended self-adaptive differential evolution algorithm, called A-jDE. A-jDE algorithm is based on jDE algorithm with the asynchronous method. jDE algorithm is one of the popular DE variants, which shows robust optimization performance on various problems. However, jDE algorithm uses a slow mutation strategy so that its convergence speed is slow compared to several state-of-the-art DE algorithms. The asynchronous method is one of the recently investigated approaches that if it finds a better solution, the solution is included in the current population immediately so it can be served as a donor individual. Therefore, it can improve the convergence speed significantly. We evaluated the optimization performance of A-jDE algorithm in 13 scalable benchmark problems on 30 and 100 dimensions. Our experiments prove that incorporating jDE algorithm with the asynchronous method can improve the optimization performance in not only a unimodal benchmark problem but also multimodal benchmark problem significantly.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.