Issue |
MATEC Web Conf.
Volume 188, 2018
5th International Conference of Engineering Against Failure (ICEAF-V 2018)
|
|
---|---|---|
Article Number | 01015 | |
Number of page(s) | 8 | |
Section | Composite Materials: Characterization, Mechanical Behavior and Modeling, Advanced Manufacturing Techniques, Multifunctionality | |
DOI | https://doi.org/10.1051/matecconf/201818801015 | |
Published online | 07 August 2018 |
Synergetic effects of carbon nanotube-graphene nanoplatelet hybrids in carbon fibre reinforced polymer composites
Institute of Science and Innovation in Mechanical and Industrial Engineering – INEGI/LAETA,
Campus da FEUP, Rua Dr. Roberto Frias,
4200-465
Porto,
Portugal
Hybrid filler systems of carbon-based nanoparticles with different geometry shapes, one-dimensional (1D-) carbon nanotubes (CNTs) and two-dimensional (2D-) graphene nanoplatelets (GnPs), were dispersed into epoxy matrix, using an intensive mixer, to evaluate their promising synergistic effects. In this work, the influence of different CNT/GnP ratios on the dispersion level, electrical and mechanical performance of epoxy-based nanocomposites was investigated. It was found that the size and number of GnP agglomerates are significantly reduced with the incorporation of CNTs, due to the formation of a co-supporting three-dimensional (3D-) architecture that delays re-agglomeration of the nanoplatelets. The combination of CNTs and GnPs, at an overall concentration of 0.043 wt. %, synergistically increase the mechanical performance and reduce the electrical percolation threshold of nanocomposites comparatively to the single filled systems. The transversal tensile properties, including elastic modulus – E2 and failure strength – Yt, of carbon fibre reinforced polymer (CFRP) composites were studied and synergetic effects were also found when combining CNTs with GnPs.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.