Issue |
MATEC Web Conf.
Volume 185, 2018
2018 The 3rd International Conference on Precision Machinery and Manufacturing Technology (ICPMMT 2018)
|
|
---|---|---|
Article Number | 00016 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/matecconf/201818500016 | |
Published online | 31 July 2018 |
The effect of thrust force in drilling composite materials using step core-ball drill
Tahua University of Science and Technology, Department of Mechatronic Enginering, 30743 Chunglin Hsinchu, Taiwan, ROC
*
Corresponding author : aetcc@tust.edu.tw
Composite materials have gained increasing popularity over the past few decades due to their superior mechanical properties, such as high strength-to-weight ratio, fighting against high temperature and corrosion resistance. The assembly of enormous aeronautical components and structures require the machining of composite materials. Drilling is the most important hole-making process in the final assembly. When drilling composite materials, a number of defects are generating. Delamination caused by drilling thrust has been showed as one of the most problematic defects after drilling composite laminates. With a pressing need for decreased delamination, many studies are turning more and more toward tool geometry and machining parameters. Drilling of composite plates using a step core-ball drill, which is a special drill to improve the chip flow and reduces the thrust force at the exit of hole, is investigated in this study. The experimental results found that the step core-ball drill was efficient in drilling of carbon fiber reinforced plastic (CFRP) and did not produce loading on the drill exit at the proper drilling conditions. The results obtained from this study feeding back for fundamental research efforts could steer future studies on the drilling composite materials in the most promising direction.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.