Issue |
MATEC Web Conf.
Volume 185, 2018
2018 The 3rd International Conference on Precision Machinery and Manufacturing Technology (ICPMMT 2018)
|
|
---|---|---|
Article Number | 00013 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/matecconf/201818500013 | |
Published online | 31 July 2018 |
A tuned vibration absorber constituted of shape memory alloy wires for vibration reduction of platform structures: design and implementation
1
Graduate School of Information, Production and Systems, Waseda University, Kitakyushu-shi, Fukuoka 808-0135, Japan
2
Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan
*
Corresponding author : leech@ntut.edu.tw
Machinery can suffer from mechanical vibrations since resonance may be generated from time-varying external excitations under different operation conditions. These detrimental vibrations may significantly influence the device's performance, effectiveness and reliability in operation. In this paper, an innovative, simple and high-efficiency tuned vibration absorber (TVA) consisting of shape memory alloy (SMA) wires, which is referred to a wire-type tuned vibration absorber (WTVA), is proposed to reduce the induced vibration. Experiments are carried out using a six-degree-of-freedom platform which is designed to simulate the frame of precision machinery in practical applications. With the equivalent stiffness of SMA wires adjusted by the controlled electric current, the frequency tunability of WTVA can be achieved. When the natural frequency of WTVA tuned in with the disturbance frequency, the experimental results demonstrate that the efficiency in vibration reduction of the platform is drastically increased even with considerable weight difference between WTVA and the platform. Moreover, the tunable frequency span also increases greatly due to the new design of WTVA and the material characteristics of SMA wires.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.