Issue |
MATEC Web Conf.
Volume 165, 2018
12th International Fatigue Congress (FATIGUE 2018)
|
|
---|---|---|
Article Number | 13001 | |
Number of page(s) | 6 | |
Section | Growth of Short and Long Cracks - Crack Growth Thresholds | |
DOI | https://doi.org/10.1051/matecconf/201816513001 | |
Published online | 25 May 2018 |
On the transition of short cracks into long fatigue cracks in reactor pressure vessel steels
1
Ropar Mechanics of Materials Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India, 140001
2
Reactor Safety Division, Bhabha Atomic Research Centre (BARC), Mumbai, India, 400085
* Corresponding author: rajwinder.singh@iitrpr.ac.in
Short fatigue cracks, having dimension less than 1 mm, propagate at much faster rates (da/dN) even at lower stress intensity factor range (da/dN) as compared to the threshold stress intensity factor range obtained from long fatigue crack growth studies. These short cracks originate at the sub-grain level and some of them ultimately transit into critical long cracks over time. Therefore, designing the components subjected to fatigue loading merely on the long crack growth data and neglecting the short crack growth behavior can overestimate the component’s life. This aspect of short fatigue cracks become even more critical for materials used for safety critical applications such as reactor pressure vessel (RPV) steel in nuclear plants. In this work, the transition behaviour of short fatigue crack gowth into long fatigue crack is studied in SA508 Grade 3 Class I low alloy steel used in RPVs. In-situ characterization of initiation, propagation and transition of short fatigue cracks is performed using fatigue stage for Scanning Electron Microscope (SEM) in addition to digital microscopes fitted over a servo-hydraulic fatigue machine and correlated with the microtructural information obtained using electron backscatter diffraction (EBSD). SA508 steel having an upper bainitic microstructure have several microstructural interfaces such as phase and grain boundaries that play a significant role in controlling the short fatigue crack propagation. Specially designed and prepared short fatigue specimens (eletro-polished) with varying initial crack lengths of the order of tens of microns are used in this study. The transition of such short initial cracks into long cracks is then tracked to give detailed insight into the role of each phase and phase/grain boundary with an objective of establishing Kitagawa-Takahashi diagram for the given RPV steel. The behavior of the transited long cracks is then compared with the crack propagation behavior obtained using conventional CT specimens. The outcome of this research will enhance information on the integrity of the components made from RPV steel used in Indian nuclear power plants.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.