Issue |
MATEC Web Conf.
Volume 162, 2018
The 3rd International Conference on Buildings, Construction and Environmental Engineering, BCEE3-2017
|
|
---|---|---|
Article Number | 04020 | |
Number of page(s) | 7 | |
Section | Structural Engineering | |
DOI | https://doi.org/10.1051/matecconf/201816204020 | |
Published online | 07 May 2018 |
The use of modal parameters in structural health monitoring
1
College of Engineering, Al-Mustansiriyah University, Baghdad, Iraq
2
School of Architecture, Design and the Built Environment, Nottingham Trent University, Nottingham, UK
* Corresponding author: ali.alghalib@uomustansiriyah.edu.iq
The concrete is liable to damage due to various stresses which compensate its adequacy and safety. The estimation of remaining strength in reinforced concrete beams when subjected to increased loading action utilizing vibration parameters is investigated. For this reason, three beams are loaded statically close to failure in various increasing load steps and then repaired. The beams are all of same dimensions, but are different in strength and range of defects introduced to each sample. Following each loading step, the experimental modal testing is utilized to collect the vibration parameters (natural frequency, damping ratio and mode shapes) of each beam when tested under free support boundary conditions. The use of vibration parameters for the purpose of damage identification are known to be an elaborate and lengthy process. On the other hand, they are successful for the structural health monitoring given that they are able to provide global on-site automated continuous monitoring. The paper features post analysis procedures for experimental modal measurements of three concrete samples to obtain and correlate the basic modal parameters (natural frequency, modal damping and mode shapes). The results of the extracted modal parameters and their combination are exploited in this research as quantified identification parameters. This paper concludes that modal parameters are successful in determining the location and quantity of structural degradation, when holistic approach considered through a system.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.