Issue |
MATEC Web Conf.
Volume 162, 2018
The 3rd International Conference on Buildings, Construction and Environmental Engineering, BCEE3-2017
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 8 | |
Section | Geotechnical and Transportation Engineering | |
DOI | https://doi.org/10.1051/matecconf/201816201003 | |
Published online | 07 May 2018 |
Investigation of soil-steel interface behavior of Iraqi soil by direct shear apparatus
School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, United Kingdom
* Corresponding author: oha31@hw.ac.uk
Soil - structure interaction is an important theme observed in many civil engineering structures like fondations. The interface shear strength plays a significant role in the analysis and design of many structures constructed above or under the ground. In this study, a total of 28 specimens were tested at vertical stresses of 100, 200, and 400 kPa using direct shear apparatus under consolidated drained condition. A silty sand soil, as per USCS classification system was prepared in the laboratory at different water contents (4.5%, 8.8%, and 12.5%) and voids ratios (0.4, 0.6, 0.8, and 1). The frictional resistance of this soil was measured. The soil samples were also sheared against three steel surfaces of different textures (smooth, moderate-rough, and rough). The experimental results showed that the steel surface texture is an effective factor in soil-steel interface shear strength. The interface shear strength of the rough steel surface was found higher than smooth and semi-rough steel surfaces. In addition to the surface roughness, the water content and void ratio also play important roles in interface shear strength.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.