Open Access
MATEC Web Conf.
Volume 69, 2016
2016 5th International Conference on Chemical and Process Engineering (ICCPE 2016)
Article Number 03004
Number of page(s) 4
Section Physical Chemistry
Published online 02 August 2016
  1. Y. H. Kim, K. Y. Koo and I. K. Song, Simulation Study on SCR(Steam Carbon Dioxide Reforming Process Optimization for Fischer-Tropsch Synthesis, Korean Chem. Eng. Res., 47, 700–704 (2009).
  2. J. R. Rostrup-Nielsen, Production of Synthesis Gas, Catal. Today, 18, 305–324 (1993). [CrossRef]
  3. C. Nottenbelt, Mossgas Gas-to-Liquid Diesel Fuels-An Environmentally Friendly Option, Catal. Today, 71, 437–445 (2002). [CrossRef]
  4. W. Maqbool & E. S. Lee. Syngas Production Process Development and Economic Evaluation for Gas‐to‐Liquid Applications. Chemical Engineering & Technology, 37, 995–1001 (2014). [CrossRef]
  5. T. Takeshita, K. Yamaji, Important roles of Fischer–Tropsch synfuels in the global energy future. Energy Policy, 36, 2773–2784 (2008). [CrossRef]
  6. M. E. Dry, The Fischer-Tropsch Processes, Catal. Today, 71, 227–241 (2002). [CrossRef]
  7. A.N. Pinheiro, A. Valentini, J.M. Sasaki, A.C. Oliveira, Highly stable dealuminated zeolite support for the production of hydrogen by dry reforming of methane, Appl. Catal. A, 355, 156–168 (2009). [CrossRef]
  8. D. J. Wilhelm, S. R. Simbeck A. D. Karp and R. L. Dickenson, Syngas Production for Gas-to-Liquids Applications: Technologies, Issues and Outlook, Fuel Process Technol., 71, 139–148 (2001). [CrossRef]
  9. X. Hao, “Simulation Analysis of a Gas-to-Liquid Process Using Aspen Plus”, Chem. Eng. Technol., 31, 188–196 (2008). [CrossRef]
  10. DL Trimm, The formation and removal of coke from nicket catalyst, Catal Rev-Sci Eng. 16, 155–189 (1977). [CrossRef]
  11. XE Verykio, Catalytic dry reforming of natural gas for the production of chemicals and hydrogen, International Journal of Hydrogen Energy, 28, 1045–1063 (2003).
  12. J.R. Rostrup-Nielsen, Syngas in perspective, Catal. Today 71, 243–247 (2002). [CrossRef]
  13. K. Aasberg-Petersen, J.-H. Bak Hansen, T. S. Christensen, I. Dybkjaer, P. S. Christensen, C. S. Nielsen, S. E. L. Winter Madsen and J. R. Rostrup-Nielsen, Technologies for Large-Scale Gas Conversion, Appl. Catal. A, 221, 379–387 (2001). [CrossRef]
  14. Y. Yang, H.W. Xiang, R.L. Zhang, B. Zhang, Y.W. Li, A highly active and stable Fe–Mn catalyst for slurry Fischer–Tropsch synthesis, Catalysis Today, 106, 170–175 (2005). [CrossRef]
  15. A.K. Dalai and B.H. Davis, Fischer-Tropsch synthesis: A review of water effects on the performances of unsupported and supported Co catalysts, Applied Catalysis A: General, 348, 1–15 (2008). [CrossRef]
  16. Y. J. Lee, S. I. Hong, D, J Moon, Studies on the steam and CO2 reforming of methane for GTL-FPSO applications, Catalysis Today, 174, 31–36 (2011). [CrossRef]
  17. Y. H. Kim, D. Y. Hwang, S. H. Song, S. B. Lee, E. D. Park, and M. J. Park, Kinetic parameter estimation of the Fischer-Tropsch synthesis reaction on K/Fe-Cu-Al catalysts, Korean J. Chem. Eng., 26, 1591–1600 (2009). [CrossRef]