Open Access
MATEC Web of Conferences
Volume 58, 2016
The 3rd Bali International Seminar on Science & Technology (BISSTECH 2015)
Article Number 03013
Number of page(s) 5
Section Information Technology and Information Systems
Published online 23 May 2016
  1. Abosedra, I., Baghestani, H., 2004. On The Predictive Accuracy of Crude Oil Future Prices. Energy policy., 32: 1389 - 1393. [CrossRef]
  2. Azadeh, A., Moghaddam, M., Khakzad, M., Ebrahimipour, V., 2012. A Flexible Neural Network-Fuzzy Mathematical Programming Algorithm for Improvement of Oil Price Estimation and Forecasting. Computer & Industrial Engineering., 62: 421 – 430. [CrossRef]
  3. Chang, K.L., 2012. Volatility Regimes, Asymmetric Basic Effects and Forecasting Performance: An Empirical Investigation of the WTI Crude Oil Futures Market. Energy Economics., 34, 294-306 [CrossRef]
  4. Chatrath, A., Miao, H., Ramchander, S. and Wang, T. (2015), The Forecasting Efficacy of Risk-Neutral Moments for Crude Oil Volatility. J. Forecast., 34: 177–190. [CrossRef]
  5. Elder, J., Serletis, A., 2009. Oil price uncertainty. Energy Economics., 31: 852 – 856. [CrossRef]
  6. Ghasemi-Fard, M., Ansari-Asl, K., Albera, L., Kachenoura, A., Senhadji, L., 2013. A low cost and reliable Polak-Ribiere conjugate gradient deflation ICA algorithm for real signals, in Electrical Engineering (ICEE) 21st Iranian Conference on. 1-5.
  7. Haidar, I., Kulkarni, S., Pan, H., 2008. Forecasting Model for Crude Oil Prices Based on Artificial Neural Network. Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP) International Conference on, 103-108.
  8. Herawati, S., Latif, M., 2015. Forecasting Crude Oil Prices Using Ensemble Empirical Mode Decomposition and Resilient Backpropagation. Seminar on Technology and Engineering 1, 182-186.
  9. Kaastra, I., Boyd, M. 1996. Designing a Neural Network for Forecasting Financial and Economic Time Series, Neurocomputing., 10: 215 – 236. [CrossRef]
  10. Knetsch, T. A. (2007), Forecasting the price of crude oil via convenience yield predictions. J. Forecast., 26: 527–549. [CrossRef]
  11. Naifar, N., Dohaiman, M. S. A., 2013. Nonlinear Analysis among Crude Oil Prices, Stock Markets’ Return and Macroeconomic Variables. International Review of Economics and Finance., 27: 416 – 431. [CrossRef]
  12. Polak, B., Ribière, G., 1969. Note sur la convergence de méthodes de directions conjuguées. Rev. Fr. Inform. Rech. Oper. 16: 35–43.
  13. Priyadarshini, E., 2015. A Comparative Analysis Of Prediction Using Artificial Neural Network And Auto Regressive Integrated Moving Average. ARPN Journal of Engineering and Applied Sciences., 10: 3078 - 3081
  14. Reboredo, J. C., Castro, M. A. R., 2013. A Wavelet Decomposition Approach to Crude Oil price and Exchange Rate Dependence. Economic Modelling., 32: 42 – 57. [CrossRef]
  15. Wu, Z., Huang, N.E., 2004. Ensemble Empirical Mode Decomposition: a Noise Assisted Data Analysis Method. Centre for Ocean-Land-Atmosphere Studies. Technical Report.
  16. Xu, B., Ouenniche, J., 2012. A Data Envelopment Analysis-based Framework for the Relative Performance Evaluation of Competing Crude Oil Prices’ Volatility Forecasting Models. Energy Economics., 34: 576 -583. [CrossRef]