Open Access
MATEC Web of Conferences
Volume 44, 2016
2016 International Conference on Electronic, Information and Computer Engineering
Article Number 01044
Number of page(s) 4
Section Computer, Algorithm, Control and Application Engineering
Published online 08 March 2016
  1. Harary F, Conditional colorability in graphs, In Graphs and Applications, Proc Graph theory Fist Colorado symp, John With & Sons, New York, 1985.
  2. J. cerny M. hornak and R. sotak Observability of a graph, Math. Slovaca 46, 1996, 21–31.
  3. Burns A C and Schelp R H, Vertex-distinguishing Proper Edge-colorings, J of Graph Theory, 1997, 26 (2): 73–82. [CrossRef]
  4. Bazgan C Harkat-Benhamdine A, Li H, etc. On the Vertex-distinguishing Proper Edge-coloring of Graph, J Combin Theory Ser B, 1999, 75: 288–301; [CrossRef]
  5. Balister P N, Bollob’as B, Schelp R H, Vertex distinguishing coloring of graphs with A(G)=2, Discrete Mathematics, 2002, 252 (2): 17 29. [CrossRef]
  6. Balister P N, Riordan O M and Schelp R H, Vertex-distinguishing edge coloring of graphs, J. Graph Theory 42 (2003)95–109. [CrossRef]
  7. Zhongfu Zhang, Linzhong Liu, Jianfang Wang, Adjacent Strong Edge Coloring of Graphs, Applied MathematicsLetters, 2002, 15: 623–626.
  8. Wang shudong, Li chongming, Xu Ji, et, On the adjacent strong edge coloring of some graphs, J of Mathematical Research and exposition, Vol.22, No 4, 2002, 412–417.
  9. Balister P N, Gyori and Schelp R H, On the adjacent-strong edge coloring of graphs with A(G) 3, J.G.T to appear.
  10. Bondy J A and Marty U S R, Graph Theory with Applications, The Macmillan Press Ltd, New York, 1976.
  11. Chartrand G, Linda L F, Graphs and diagraphs, Ind edition wadsirth Brokks/cole, Monterey, CA (1986).