Open Access
MATEC Web of Conferences
Volume 22, 2015
International Conference on Engineering Technology and Application (ICETA 2015)
Article Number 05002
Number of page(s) 7
Section Chemical and Industrial Technology
Published online 09 July 2015
  1. Sarciftci N S, Smilowitz L. & Heeger A J. et al. 1992. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science, 258(5087): 1474–1476. [CrossRef] [PubMed]
  2. Yu G, Gao J, Hemmelen J C, Wudl F. & Heeger A J. 1995. Polymer photovoltaic cells enhanced efficiencies via a network of internal donor-acceptor heterojucntions. Science, 270(5243): 1789–1791. [CrossRef]
  3. Kim M et al. 2014. Electrical performance of organic solar cells with additive-assisted vertical phase separation in the photoactive layer. Adv. Energy Mater, 4(2): 1300612.
  4. O’regan, B & Grfitzel M. 1991. A low-cost, high-efficiency solar cell based on dyesensitized. Nature, 353: 737–740. [CrossRef]
  5. Yella A et al. 2011. Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science, 334(6060): 629–634. [CrossRef] [PubMed]
  6. Kim H S et al. 2012. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep, 2: 591.
  7. Park N G.2013. Organometal perovskite light absorbers toward a 20% efficiency lowcost solid-state mesoscopic solar cell. J. Phys. Chem. Lett., 4: 2423–2429. [CrossRef]
  8. Gevorgyan S A, Alstrup J. & Kress F C. 2009. A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. J. Mater. Chem., 19: 5442–5451. [CrossRef]
  9. Na SI, Kim S S, Jo J & Kim D Y. 2008. Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes. Adv. Mater, 20: 4061–4067. [CrossRef]
  10. Hou S et al. 2012. Flexible conductive threads for wearable dye-sensitized solar cells. J. Mater. Chem., 22: 6549–6552. [CrossRef]
  11. Snaith H J. 2013. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett., 4: 3623–3630. [CrossRef]
  12. Ball J M, Lee M M, Hey A & Snaith H J. 2013. Low-temperature processed mesosuperstructured to thin-film perovskite solar cells. Energy Environ. Sci, 6, 1739–1743. [CrossRef]
  13. Huanping Zhou et al. 2014. Interface engineering of highly efficient perovskite solar cells, Science, 10(1126): 345–542.
  14. Chen Q. et al. 2014. Planar heterojunction perovskite solar cells via vapor assisted solution process. J. Am. Chem. Soc., 136(2): 622–625. [CrossRef]
  15. Heo J H. et al. 2013. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photon, 7(6): 486–491. [CrossRef]
  16. Wojciechoski K, Saliba M, Leijtens T, Abate A. & Snatih H. 2014. Sub 150 uC processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ. Sci, 7: 1142–1147. [CrossRef]
  17. Xingb G. et al. 2013. Long-range balanced electron and hole transport lengths in organic-inorganic CH3NH3PbI3. Science, 342(6156): 344–347. [CrossRef]
  18. Stranks S D. et al. 2013. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342(6156): 341–344. [CrossRef]
  19. Mingzhen Liu, Michael B. Johnston & Henry J. Snaith. 2013. Efficient planar heterojunction perovskite solar cells by vapour deposition, Opticletter, 19(501): 395–403.
  20. Zhang Weihao Peng Xiaochen & Feng Xiaodong. 2014. Recent progress of perovskite solar cells. Electronic Components and Materials. 33(8):7–11.
  21. Burschka J, Pellet N. & Moon S J, et al. 2013. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458): 316–319. [CrossRef] [PubMed]
  22. Ku Zhiliang. 2014. The Optimization and Design of Counter Electrodes for Mesoscopic Solar Cells Candidate. Wuhan: Huazhong University of Science and Technology.
  23. Im J, Lee C. & Lee J, et al. 2011. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10): 4088–4093. [CrossRef]
  24. Epron G E, Burlakov V M, Docampo P, Goriely A. & Snaith H J. 2014. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater 24(1): 151–157. [CrossRef]