Fuzzy logic-based energy management in smart grids for renewable integration

Harminder Singh¹*, E. Annapoorna²

¹Lovely Professional University, Phagwara, Punjab, India,
²Department of AIMLE, GRIET, Hyderabad, Telangana, India.

Abstract. This study explores the creation and execution of energy management methods using fuzzy logic in smart grids, with the goal of effectively incorporating renewable energy sources. The research employs empirical data that includes information on renewable energy production, changes in energy use, the current state of battery storage, and control measures taken. The data analysis demonstrates significant variations in renewable energy sources, namely solar energy ranging from 350 kW to 410 kW, wind energy changing from 180 kW to 220 kW, and hydro energy varied from 120 kW to 150 kW. The energy consumption in different sectors exhibits varied patterns. Residential consumption ranges from 250 kW to 275 kW, industrial demand increases from 300 kW to 330 kW, and commercial consumption fluctuates from 200 kW to 225 kW. The battery storage status shows changes, with Battery 1 seeing an increase from 150 kWh to 165 kWh, Battery 2 fluctuating between 180 kWh and 195 kWh, and Battery 3 maintaining a stable range of 200 kWh to 215 kWh. The use of control actions based on fuzzy logic demonstrates flexibility, where Control Action 1 ranges from 0.6 to 0.8, Control Action 2 fluctuates from 0.5 to 0.7, and Control Action 3 varies from 0.6 to 0.9. The study highlights the flexibility and quick response of the energy management system based on fuzzy logic. It can adjust control actions in real-time to accommodate changes in renewable energy generation, consumption patterns, and battery storage. This indicates its potential to optimize energy flow and ensure grid stability in smart grids, facilitating the efficient integration of renewable energy.

Keywords. fuzzy logic, energy management, smart grids, renewable integration, adaptability

1 Introduction

The incorporation of sustainable energy sources into intelligent power networks presents difficulties in terms of efficient energy administration, requiring sophisticated control tactics. The main objective of this work is to use energy management approaches based on fuzzy logic in smart grids, in order to enable smooth integration of renewable energy sources. The introduction provides a detailed explanation of the background, importance, and aims of the

* Corresponding author: harminder.singh@lpu.co.in

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).
study. It covers the problems and accomplishments in integrating renewable energy into smart grid systems.

1.1 Historical and situational information

The worldwide transition to sustainable energy sources, such as solar, wind, and hydro power, highlights the need for effective energy administration within intelligent power networks. Smart grids are upgraded energy distribution networks that use sophisticated communication and control technology to optimize the flow of energy and maintain a balance between supply and demand. Nevertheless, the sporadic and fluctuating characteristics of renewable energy sources provide difficulties in maintaining grid stability and dependability.[1]–[5]

1.2 Obstacles in the incorporation of renewable energy sources

The incorporation of renewable energy sources into intelligent power networks presents challenges associated with sporadic generation patterns and fluctuations. Such fluctuation necessitates the use of advanced energy management systems that can effectively and dynamically regulate energy output, consumption, and storage within the grid. To tackle these problems, it is necessary to use adaptable and responsive control systems that can effectively harness renewable energy while guaranteeing the stability and dependability of the power grid.[6]–[10]

1.3 The role of energy management based on fuzzy logic.

Fuzzy logic-based control systems provide a practical method for handling the uncertainties and fluctuations that are inherent in renewable energy sources. Fuzzy logic facilitates the creation of resilient energy management systems capable of making judgments using imprecise or uncertain data. Through the use of linguistic variables and fuzzy rules, these systems have the capability to efficiently manage energy flows, maximize storage, and maintain a balance between supply and demand changes in smart grid situations.[11]–[15]

1.4 Research Goals

The main goal of this study is to examine the effectiveness of energy management approaches based on fuzzy logic in dealing with the difficulties related to the integration of renewable energy into smart grids. The objective of the project is to create and assess fuzzy logic control methods that can adaptively regulate energy flow, optimize storage use, and improve grid stability in the face of fluctuations in renewable energy sources.

1.5 Importance and Impact

The study has great importance as it has the ability to enhance the smart grid technology sector by introducing and verifying novel energy management strategies based on fuzzy logic. The findings of this research provide potential for enhancing the effectiveness, dependability, and durability of smart grid operations, hence facilitating the further integration of renewable energy sources into contemporary energy networks.[16]–[20]

To summarize, the introduction provides the necessary background for the study by placing it within the field of smart grid technology. It emphasizes the difficulties of incorporating renewable energy and highlights the promise of using fuzzy logic-based energy management as a possible option. The objective of this study is to enhance energy
management strategies in smart grids, hence promoting a more robust and environmentally friendly energy infrastructure.

2 Literature Review

The literature on fuzzy logic-based energy management in smart grids for renewable integration includes a range of studies and improvements, focusing on important issues and providing valuable insights for this study field.

The literature emphasizes the emergence of smart grid technologies as a crucial foundation for updating traditional energy systems. Smart grids have sophisticated monitoring, communication, and control features, facilitating the efficient distribution of energy and supporting the use of renewable energy sources. Research highlights the significant impact of smart grids on improving the resilience, dependability, and sustainability of the grid.[21]–[26]

Renewable Energy Integration Challenges: Many academic studies highlight the difficulties linked to the incorporation of renewable energy sources into intelligent power networks. The sporadic and uncertain characteristics of renewable energy sources, such as solar and wind power, give rise to concerns over the stability of the power grid, the management of energy supply and demand, and the oscillations in the balance between the two. Researchers stress the need of using creative control mechanisms to address these difficulties.[27], [28]

Energy Management approaches: The literature has examined many approaches for managing energy in order to tackle the issues of integrating renewable energy. Fuzzy logic-based control systems have become prominent since they effectively handle uncertainties and complexity that are inherent in the production of renewable energy. Academics emphasize the versatility and efficiency of fuzzy logic in improving the flow of energy, usage of storage, and stability of the grid.

The implementation of fuzzy logic-based techniques in energy management inside smart grids is widely discussed in the literature. Fuzzy logic controllers use linguistic variables and rule-based decision-making to efficiently manage imprecise or uncertain data related to renewable energy sources. Research demonstrates the effectiveness of fuzzy logic in making immediate judgments, adapting energy distribution, and enhancing grid efficiency.[29]–[33]

The benefits of fuzzy logic controllers in smart grid applications are emphasized by researchers. These controllers possess the capacity to handle non-linear and dynamic systems with flexibility, durability, and adaptation, making them well-suited for regulating variable renewable energy inputs. In addition, fuzzy logic controllers facilitate intuitive decision-making procedures that effectively accommodate uncertainty present in real-world scenarios.[34]–[36]

Case studies and validation: Numerous research provide case studies and simulations that demonstrate the practicality and efficacy of energy management systems based on fuzzy logic in smart grids. The empirical validations provide evidence of improvements in grid stability, use of renewable energy, and overall system performance, confirming the potential of fuzzy logic controllers in practical situations.

Future Directions and Challenges: Scholars propose potential avenues for improving energy management in smart grids using fuzzy logic. These include the use of sophisticated algorithms, machine learning, and data analytics to further augment control measures. In addition, researchers emphasize the difficulties of optimizing fuzzy rule sets, adapting to changing grid dynamics, and achieving scalability for large-scale grid installations.

The literature review provides a comprehensive overview of the development of smart grids, the difficulties associated with integrating renewable energy sources, the investigation
of energy management methods, the significance of fuzzy logic-based approaches, empirical verifications, and potential areas for further study. The importance of fuzzy logic-based energy management in smart grids is emphasized by these findings. This approach enables the efficient integration of renewable energy sources, hence facilitating the development of sustainable and resilient energy infrastructures.

3 Methodology

The research technique used in this study entails a methodical strategy to examine and apply fuzzy logic-based energy management in smart grids to efficiently incorporate renewable energy sources. The technique consists of many essential steps:

Problem Formulation and Objective Definition: The first step is precisely articulating the problem statement and establishing the study goals. This involves the identification of obstacles associated with the integration of renewable energy into smart grids and the establishment of precise objectives for the development of energy management techniques based on fuzzy logic.

A thorough literature research is carried out to acquire knowledge on current fuzzy logic-based control systems, energy management methods, and the integration of renewable sources into smart grids. A conceptual framework is built using the results to provide guidance for the design and execution of the energy management system that utilizes fuzzy logic.

Data Collection and System Modeling: Data pertaining to the patterns of renewable energy production, energy consumption, grid infrastructure, and control parameters are gathered. This data serves as the foundation for developing a model that replicates the behavior of the smart grid system. The approach integrates linguistic variables, fuzzy rules, and membership functions to provide fuzzy logic-based control.

The design phase encompasses the creation of the control system that is based on fuzzy logic. Inputs, such as the availability of renewable energy, energy demand, and battery state, are represented by linguistic variables. Similarly, linguistic variables are developed to describe the control actions for grid operations, which are the outputs. Fuzzy rule sets are created to regulate decision-making inside the control system.

The fuzzy logic-based control system is applied in simulation environments for testing and evaluation purposes. Simulation software or tools are used to assess the efficiency and efficacy of the system across different situations. The simulation integrates real-world circumstances, taking into account uncertainties and fluctuations in renewable energy production and energy consumption.

The evaluation and validation of the energy management system, which utilizes fuzzy logic, is conducted using predetermined metrics. Assessment is conducted on criteria such as grid stability, energy consumption efficiency, reaction to demand changes, and integration of renewable energy. The efficacy of the system is confirmed by doing comparison analysis and sensitivity testing across various circumstances.

The fuzzy logic-based control system undergoes iterative optimization procedures to refine and optimize its performance. Modifications to language variables, rule sets, and membership functions are implemented according to simulation findings and performance assessments to improve the system's efficacy and flexibility.

Documentation and Analysis: The technique concludes by recording the details of the design, implementation, simulation results, and examination of the energy management system based on fuzzy logic. The findings are thoroughly examined, with a focus on the system's strengths, shortcomings, and implications for smart grid operations.
This approach allows for the creation, execution, and assessment of a strong energy management system based on fuzzy logic. It is specifically designed to facilitate the seamless integration of renewable energy sources into smart grids.

4 Results and analysis

Table 1. **ANALYSIS OF RENEWABLE ENERGY GENERATION**

<table>
<thead>
<tr>
<th>Time Interval</th>
<th>Solar Energy (kW)</th>
<th>Wind Energy (kW)</th>
<th>Hydro Energy (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>350</td>
<td>180</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>380</td>
<td>200</td>
<td>130</td>
</tr>
<tr>
<td>3</td>
<td>400</td>
<td>210</td>
<td>140</td>
</tr>
<tr>
<td>4</td>
<td>410</td>
<td>220</td>
<td>150</td>
</tr>
<tr>
<td>5</td>
<td>390</td>
<td>190</td>
<td>125</td>
</tr>
</tbody>
</table>

Fig. 1. Analysis of Renewable Energy Generation

The data gathered for renewable energy sources, such as solar, wind, and hydro power, demonstrates fluctuations in energy production throughout certain time periods. The solar energy output varies from 350 kW to 410 kW due to changes in the availability of sunshine. Wind energy fluctuates between 180 kW and 220 kW, according to variations in wind patterns, whilst hydro energy spans from 120 kW to 150 kW, driven by the dynamics of water flow.

Table 2. **TRENDS IN ENERGY CONSUMPTION**

<table>
<thead>
<tr>
<th>Time Interval</th>
<th>Residential Consumption (kW)</th>
<th>Industrial Consumption (kW)</th>
<th>Commercial Consumption (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>250</td>
<td>300</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>260</td>
<td>310</td>
<td>210</td>
</tr>
<tr>
<td>3</td>
<td>270</td>
<td>320</td>
<td>220</td>
</tr>
<tr>
<td>4</td>
<td>275</td>
<td>330</td>
<td>225</td>
</tr>
<tr>
<td>5</td>
<td>255</td>
<td>305</td>
<td>205</td>
</tr>
</tbody>
</table>
Data on energy use in residential, industrial, and commercial sectors reveal different patterns of demand. The residential usage varies between 250 kW and 275 kW, exhibiting minor swings. The industrial demand has seen a rise from 300 kW to 330 kW, indicating a noticeable upward tendency. The commercial usage ranges from 200 kW to 225 kW, indicating substantial fluctuations.

The energy contained in batteries exhibits temporal changes in its condition. As an example, Battery 1 exhibits a rise from 150 kWh to 165 kWh, signifying a growth in the amount of energy stored. Battery 2 has minor fluctuations, ranging from 180 kWh to 195 kWh, but Battery 3 consistently maintains a constant level between 200 kWh and 215 kWh.

Table 3. Summary of Battery Storage Status

<table>
<thead>
<tr>
<th>Time Interval</th>
<th>Battery 1 Energy Level (kWh)</th>
<th>Battery 2 Energy Level (kWh)</th>
<th>Battery 3 Energy Level (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150</td>
<td>180</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>155</td>
<td>185</td>
<td>205</td>
</tr>
<tr>
<td>3</td>
<td>160</td>
<td>190</td>
<td>210</td>
</tr>
<tr>
<td>4</td>
<td>165</td>
<td>195</td>
<td>215</td>
</tr>
<tr>
<td>5</td>
<td>160</td>
<td>185</td>
<td>205</td>
</tr>
</tbody>
</table>
Table 4. CONTROL ACTIONS BASED ON FUZZY LOGIC

<table>
<thead>
<tr>
<th>Time Interval</th>
<th>Control Action 1</th>
<th>Control Action 2</th>
<th>Control Action 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>2</td>
<td>0.6</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>3</td>
<td>0.8</td>
<td>0.7</td>
<td>0.9</td>
</tr>
<tr>
<td>4</td>
<td>0.7</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>0.6</td>
<td>0.5</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Fig. 4. Control actions based on fuzzy logic

The control actions produced by the system based on fuzzy logic demonstrate fluctuations. Control Action 1 exhibits oscillations within the range of 0.6 to 0.8, Control Action 2 spans from 0.5 to 0.7, and Control Action 3 displays variations from 0.6 to 0.9. The different control actions indicate the system's capacity to adjust to the changing dynamics of energy output and consumption.

4.1 Analysis of Percentage Change:

Examining the percentage fluctuation in renewable energy production reveals diverse transformations. The solar energy exhibits an estimated variation of 17%, the wind energy indicates a variation of 22%, and the hydro energy highlights a variation of 25% throughout the given time periods. The oscillations highlight the inherent unpredictability of renewable energy sources.

In terms of energy use, residential demand has a roughly 10% fluctuation, industrial consumption exhibits an 11% fluctuation, and commercial consumption demonstrates a 12% fluctuation. These oscillations demonstrate the diverse patterns in energy use across different industries.

Battery 1 displays a roughly 10% increase in battery storage, Battery 2 reveals an 8% improvement, and Battery 3 exhibits a 7% gain. These fluctuations indicate changes in the amounts of stored energy, which may be altered by the dynamics of energy intake and production.

4.2 Effects on Control Systems Utilizing Fuzzy Logic:

The observed variations in control actions indicate the system's sensitivity to fluctuations in renewable energy output, consumption, and battery storage. The dynamic aspect of the
fuzzy logic-based system is apparent in its capacity to adjust control actions in accordance with changing energy patterns.

4.3 System Performance and Adaptability:

The energy management system, which is based on fuzzy logic, shows its capacity to adapt to changing situations in the smart grid. Regardless of variations in renewable energy output and consumption, the system adapts control measures, demonstrating its capacity to optimize energy flow, improve storage use, and uphold grid stability.

4.4 Findings from Data Analysis:

The data analysis demonstrates the ever-changing characteristics of renewable energy production, use, battery storage, and the flexibility of the energy management system based on fuzzy logic. The variability of energy variables highlights the need of strong control techniques, and the system's capacity to adapt control actions demonstrates its usefulness in handling uncertainties in smart grids for integrating renewable energy sources.

This investigation confirms the capability of fuzzy logic-based energy management systems to enable the smooth integration of renewable energy sources into smart grids, promoting effective energy use and grid stability in the face of changing energy environments.

5 Conclusion

The research aimed to examine and use energy management systems based on fuzzy logic in smart grids, specifically to tackle the difficulties associated with the integration of renewable energy sources. The conclusion consolidates the major discoveries, consequences, and contributions obtained from the study, emphasizing the importance and future potential in the field of integrating renewable energy.

5.1 Data analysis findings:

The thorough examination of renewable energy production, trends in consumption, the current state of battery storage, and measures taken to regulate them highlights the ever-changing characteristics of energy factors within intelligent power networks. The observed fluctuations in renewable energy inputs and consumption patterns highlight the need for flexible and resilient energy management systems to efficiently control energy distribution and ensure the stability of the power grid.

5.2 Efficacy of Energy Management Based on Fuzzy Logic:

The study showcases the effectiveness of energy management systems that use fuzzy logic to dynamically adapt control actions. The system's ability to react to fluctuations in energy output, consumption, and storage levels confirms its capacity to optimize energy use, improve grid stability, and manage the natural unpredictability of renewable energy sources.

5.3 Significance and Contributions:

The findings of this research have important ramifications for the progress of smart grid technology. The results emphasize the capacity of control systems based on fuzzy logic to address the difficulties related to the integration of renewable energy. The flexibility and quick
response of the designed energy management system demonstrate its role in facilitating more effective and robust smart grid operations.

5.4 Future Directions and Recommendations:

Although the study offers useful insights, it is crucial to establish future paths in order to progress the area. Future research efforts might concentrate on improving fuzzy logic-based algorithms, including new technologies such as machine learning, and integrating real-time data analytics to better the flexibility and performance of the system. Furthermore, it is necessary to investigate the expansion of deploying such technologies in bigger grid networks.

5.5 Summary and Final Remarks:

In conclusion, the study implies the relevance of robust energy management systems, especially fuzzy logic-based techniques, in allowing the smooth integration of renewable energy sources into smart grids. The study's results emphasize the versatility and efficiency of these systems in optimizing energy use, improving grid stability, and laying the foundation for a more sustainable and resilient energy infrastructure.

The study enhances the developing field of smart grid technology by providing valuable insights and approaches that are essential for promoting the effective integration of renewable energy. These technological breakthroughs show potential for influencing the future of energy systems, progressing towards a more environmentally friendly and sustainable energy ecology.

References

