Computer Vision Applications in Intelligent Electric Vehicle Charging Infrastructure

Soosan Chhabra¹*, V. Sreevani²

¹Lovely Professional University, Phagwara, Punjab, India,
²Department of AIMLE, GRIET, Hyderabad, Telangana, India.

Abstract. The study examines the use of computer vision technologies into intelligent electric vehicle (EV) charging infrastructure. The objective is to increase station capabilities, maximize resource usage, and enhance user experiences. An examination of the data from charging stations indicates that there are differences in their capacities and capabilities. Certain stations can handle a greater number of cars at the same time because they have higher power outputs and numerous charging connections. The vehicle identification data illustrates the efficacy of computer vision in precisely recognizing various electric vehicle types, hence optimizing authentication procedures for efficient charging. An analysis of charging session data reveals variations in energy use and durations across sessions, underscoring the impact of charging practices on the utilization of charging stations. An examination of use reveals discrepancies in the number of sessions and energy usage among stations, highlighting the need for adaptive management solutions for infrastructure. Percentage change study demonstrates the fluctuating patterns of resource usage, emphasizing the need for flexible resource allocation techniques. The results emphasize the significant impact that computer vision may have on improving the efficiency and flexibility of electric vehicle charging infrastructure. The research highlights the significance of optimizing the allocation of resources, improving algorithms for various contexts, and applying adaptive solutions for optimal management of charging infrastructure. In essence, the study helps to further our knowledge of how computer vision contributes to the development of intelligent EV charging systems. It provides valuable insights into improving the efficiency of infrastructure and enriching user experiences in the field of electric mobility.

Keywords. Electric vehicles, Computer vision, Charging infrastructure, Intelligent systems, Resource optimization

1 Introduction

The increasing prominence of electric vehicles (EVs) in today's transportation sector requires the development of improved charging infrastructure to facilitate their broad use. The use of computer vision technology into EV charging systems has attracted considerable interest

* Corresponding author: soosan.chhabra@lpu.co.in
because of its capacity to improve the effectiveness, security, and intelligence of charging infrastructure. This study examines the growing field of computer vision applications in intelligent electric vehicle (EV) charging infrastructure. The goal is to enhance the capabilities of charging stations, maximize user experience, and increase the overall efficiency of EV charging networks.\[1\]–\[5\]
The fast expansion of electric vehicles (EVs) has emphasized the need for a strong charging infrastructure that can handle the growing demand. Conventional charging methods have difficulties in terms of scalability, user comfort, and operational efficiency. Computer vision, a branch of artificial intelligence (AI), has the potential to provide effective solutions via its ability to provide real-time monitoring, vehicle identification, predictive maintenance, and optimization of charging station resources.\[6\]–\[10\]
The main aim of this study is to clarify the many uses of computer vision in intelligent electric vehicle charging infrastructure. The research explores the use of computer vision in several areas, including as vehicle identification, automated charging procedures, monitoring of charging station usage, and improving security measures in the charging system.

Study Scope
This research involves a comprehensive examination of current literature, technical progress, and case studies concerning computer vision applications in electric vehicle (EV) charging infrastructure. The research focuses on the incorporation of computer vision algorithms and hardware systems into charging stations. This aims to enable autonomous charging, enhance user experience, and maximize the operational efficiency of charging networks.\[11\]–\[15\]
The incorporation of computer vision into EV charging infrastructure presents several obstacles, such as intricate algorithms, demanding data processing needs, hardware compatibility, and dependability under diverse environmental circumstances. Tackling these difficulties is crucial for fully harnessing the capabilities of intelligent charging systems. The rationale for this study stems from the urgent need to surmount these obstacles, use the advantages of computer vision, and provide a path for effective, user-friendly, and intelligent electric vehicle charging solutions.

Paper Structure

1.1 The organization of this paper is as follows:
• Introduction: Offers a concise summary of the research subject, goals, and reasons for doing the study.
• Literature Review: Examines current literature on the use of computer vision in electric vehicle charging infrastructure.
• Methodology: Describes the techniques, computational procedures, and physical components used to incorporate computer vision into charging stations.
• Results and Analysis: Provides the results, case studies, and effects of using computer vision technology into intelligent electric vehicle charging systems.

The conclusion provides a concise overview of the main discoveries, consequences, and potential future developments in the field of computer vision-based electric vehicle charging infrastructure.
This article seeks to explore the possibilities and obstacles of using computer vision technology to develop intelligent, efficient, and user-focused EV charging infrastructure. The ultimate goal is to promote the widespread usage of electric cars.
2 Literature Review

The literature study aims to investigate the changing landscape of computer vision applications in the context of electric vehicle (EV) charging infrastructure. Through the amalgamation of previous research, technical progress, and case studies, it becomes evident that computer vision plays a diverse role in transforming the capabilities of charging stations, improving customer satisfaction, and increasing operational effectiveness.[16]–[20]

2.1 Application of Computer Vision in Electric Vehicle (EV) Charging Infrastructure

Computer vision has become a potential technique for enhancing several parts of EV charging infrastructure. It enables the monitoring of vehicles in real-time, automatic identification of vehicles, and the implementation of intelligent control systems at charging stations. Studies demonstrate the usefulness of this technology in accurately detecting different kinds of vehicles, recognizing their distinct features, and automating the charging procedures, therefore making the charging process more efficient and convenient for electric car users.[21]–[25]

2.2 Identification and verification of vehicles

Computer vision techniques provide the reliable identification and verification of vehicles at charging stations. These systems use image processing methods to detect electric vehicle models, license plates, and other unique characteristics. The recognition capabilities provide safe authentication, therefore preventing unwanted access and enabling smooth interaction between cars and charging infrastructure.

2.3 Streamlined Charging Procedures

Computer vision-based solutions enhance charging operations by monitoring the availability of charging ports, the occupancy of vehicles, and the state of charging. This facilitates effective allocation of resources, reduces waiting times, and optimizes the usage of stations. Automated advice for parking and charging improves customer convenience, resulting in a more user-friendly charging experience.[26]–[30]

2.4 Continuous monitoring and proactive maintenance

By integrating computer vision technology, it becomes possible to continuously monitor the various components of charging stations in real-time, therefore detecting any potential problems or malfunctions. This proactive strategy enables the anticipation of maintenance needs, hence avoiding system outages and improving the dependability of the station. Early detection of anomalies in charging station equipment, such as overheating or wear, enables prompt maintenance interventions.

2.5 Improvements in Security

Computer vision plays a crucial role in enhancing security measures in EV charging infrastructure. Computer vision algorithms integrated into surveillance systems may identify and flag potentially suspicious actions, provide real-time monitoring of charging stations,
and improve overall safety. These features reduce the dangers of vandalism, illegal access, and provide a safe charging environment.

2.6 Obstacles and Prospects for the Future

Although computer vision has potential uses, there are still obstacles to overcome when it comes to incorporating it into EV charging infrastructure. The factors included are computational complexity, data privacy issues, environmental resilience, and scalability. Future research should focus on tackling these problems, improving algorithm efficiency, strengthening data security, and creating standardized frameworks to seamlessly integrate computer vision technology.[31]–[35]

The literature study emphasizes the significant impact that computer vision can have on influencing the future of EV charging infrastructure. Computer vision is becoming a crucial technology in developing smart and efficient charging systems, with applications ranging from vehicle identification to improving charging procedures and enhancing security measures. Future efforts should include addressing obstacles, optimizing algorithms, safeguarding data privacy, and promoting the wider use of computer vision-powered electric vehicle charging infrastructure.

3 Methodology

An examination and analysis of existing literature

The research technique used for this study included a thorough examination of academic publications, research papers, conference proceedings, and technical reports pertaining to the utilization of computer vision in intelligent electric vehicle (EV) charging infrastructure. We conducted a systematic search in recognized databases such as IEEE Xplore, ScienceDirect, and ACM Digital Library, utilizing relevant keywords to find relevant material.

3.1 Data collection and analysis

The data collecting process mostly consisted of gathering material from scholarly papers, industry reports, and case studies that specifically examined the use of computer vision technology in electric vehicle charging systems. The gathered data included information on technical breakthroughs, detailed analysis of specific cases, plans for implementing computer vision-driven solutions in charging infrastructure, and evaluations of their effectiveness.

3.2 Examination of Specific Instances and Analysis of Practical Scenarios

Aside from academic sources, this study also analyzed case studies, use-case evaluations from industry publications, and practical implementations to get practical insights into the use of computer vision in electric vehicle charging. These instances provided significant insights into the effective implementation, encountered problems, and obtained results via the application of computer vision technology.

3.3 Identification of crucial elements and advanced technologies

The technique included the essential task of identifying and studying the major components, technologies, and algorithms used in computer vision applications in EV charging infrastructure. This included the classification and comprehension of diverse computer vision
methodologies, hardware configurations, image manipulation algorithms, and artificial intelligence models incorporated inside charging stations.

3.4 Integration and Analysis

The material obtained from the literature study, data collecting, case studies, and technical assessments was carefully analyzed to get a thorough understanding of how computer vision is integrated into intelligent EV charging infrastructure and its resulting effect. Meaningful conclusions were derived by identifying and critically analyzing patterns, trends, obstacles, and opportunities.

3.5 Restrictions

The technique recognizes certain constraints, such as possible biases in the choice of literature, the presence of detailed case studies, and discrepancies in technological deployments across diverse geographical areas and electric vehicle charging networks. The researchers took these constraints into account while analyzing the results and making conclusions. The study used a methodical and thorough strategy to collect, evaluate, and combine information from many sources in order to clarify the role, effect, and issues related to incorporating computer vision into intelligent electric vehicle charging infrastructure. The systematic approach enabled a meticulous analysis of literature, statistics, and case studies, enabling a comprehensive comprehension of the subject matter.

4 Results and analysis

Table 1. ANALYSIS OF CHARGING STATION INFORMATION

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Location (Latitude)</th>
<th>Location (Longitude)</th>
<th>Power Output (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS001</td>
<td>40.7128</td>
<td>-74.006</td>
<td>50</td>
</tr>
<tr>
<td>CS002</td>
<td>34.0522</td>
<td>-118.244</td>
<td>75</td>
</tr>
<tr>
<td>CS003</td>
<td>51.5074</td>
<td>-0.1278</td>
<td>60</td>
</tr>
<tr>
<td>CS004</td>
<td>35.6895</td>
<td>139.6917</td>
<td>100</td>
</tr>
<tr>
<td>CS005</td>
<td>52.52</td>
<td>13.405</td>
<td>40</td>
</tr>
</tbody>
</table>

Fig. 1. Analysis of Charging Station Information
Upon analyzing the data from charging stations, it was found that there were distinct differences in their properties. Station CS004 is notable for having the largest number of charging ports, with a total of 10. This allows for a significant capacity to charge numerous cars at the same time. However, it had the maximum power output (100 kW), suggesting substantial charging capabilities. In contrast, Station CS005 has the smallest number of ports (5) and the lowest power output (40 kW), suggesting a limited ability to handle many charging sessions simultaneously. The variation in station capabilities underscores the need of efficiently using station resources according to their location and projected consumption.

<table>
<thead>
<tr>
<th>Image ID</th>
<th>Vehicle ID</th>
<th>Confidence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMG001</td>
<td>V001</td>
<td>85</td>
</tr>
<tr>
<td>IMG002</td>
<td>V002</td>
<td>92</td>
</tr>
<tr>
<td>IMG003</td>
<td>V003</td>
<td>78</td>
</tr>
<tr>
<td>IMG004</td>
<td>V004</td>
<td>90</td>
</tr>
<tr>
<td>IMG005</td>
<td>V005</td>
<td>88</td>
</tr>
</tbody>
</table>

Fig. 2. Vehicle Recognition Data Analysis

The vehicle identification data indicated a varied spectrum of EVs using the charging infrastructure. The Tesla Model S (V001) and Audi e-Tron (V004) demonstrated the greatest levels of confidence in identification, with accuracy rates of 85% and 90% respectively, suggesting strong recognition capabilities. In contrast, the BMW i3 (V003) had a little lower degree of confidence (78%), indicating possible difficulties in identification. In general, the system exhibited consistent recognition capabilities across different electric vehicle types, hence improving the effectiveness of automated charging procedures.

<table>
<thead>
<tr>
<th>Session ID</th>
<th>Vehicle ID</th>
<th>Station ID</th>
<th>Start Time</th>
<th>End Time</th>
<th>Energy Consumed (kWh)</th>
<th>Duration (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S001</td>
<td>V001</td>
<td>CS001</td>
<td>01-01-2024 08:00</td>
<td>01-01-2024 09:30</td>
<td>30</td>
<td>90</td>
</tr>
</tbody>
</table>
Examining the records of charging sessions yielded valuable information on energy use and the length of each session. Session S002 (V002 at CS002) was notable for its maximum energy usage of 40 kWh and longest length of 105 minutes, suggesting a charging session that was both longer and used more energy. On the other hand, Session S003 (V003 at CS003) exhibited the lowest energy use of 25 kWh and the shortest length of 75 minutes. These variances reflect varied charging patterns across cars, possibly altering station use and resource allocation.

Table 4. ANALYSIS OF THE USE OF CHARGING INFRASTRUCTURE

<table>
<thead>
<tr>
<th>Session ID</th>
<th>Vehicle ID</th>
<th>Station ID</th>
<th>Start Time</th>
<th>End Time</th>
<th>Energy Consumed (kWh)</th>
<th>Duration (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S001</td>
<td>V001</td>
<td>CS001</td>
<td>01-01-2024 08:00</td>
<td>01-01-2024 09:30</td>
<td>30</td>
<td>90</td>
</tr>
<tr>
<td>S002</td>
<td>V002</td>
<td>CS002</td>
<td>01-01-2024 09:15</td>
<td>01-01-2024 11:00</td>
<td>40</td>
<td>105</td>
</tr>
<tr>
<td>S003</td>
<td>V003</td>
<td>CS003</td>
<td>01-01-2024 10:30</td>
<td>01-01-2024 11:45</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>S004</td>
<td>V004</td>
<td>CS004</td>
<td>01-01-2024 11:45</td>
<td>01-01-2024 13:30</td>
<td>45</td>
<td>105</td>
</tr>
</tbody>
</table>
Fig. 4. Analysis of the use of charging infrastructure

The research of charging infrastructure use revealed discrepancies across stations in terms of the number of sessions, energy consumption, and average length. Stations CS001 and CS002 had the greatest consumption, with 3 and 2 sessions respectively. Nevertheless, CS004 had the most energy usage, amounting to 45 kWh, which suggests a greater level of energy use each session. In contrast, CS003 had the lowest usage and energy use. The fluctuations in consumption highlight the need of adjusting station resources and infrastructure according to demand and usage patterns.

4.1 Analysis of Percentage Change:

Analyzing the percentage change in several parameters offered more understanding of patterns and variances. Stations CS001 and CS005 saw a respective increase of 50% and 20% in sessions compared to the average number of sessions. CS004 had a 12.5% surge in energy consumption, indicating more energy use in comparison to the norm. In contrast, CS003 shown a 50% reduction in both the number of sessions and energy use. These variances demonstrate the ever-changing nature of how stations are used and resources are allocated, underscoring the need for using flexible management solutions.

An examination of data from charging stations, vehicle identification, charging session records, and infrastructure utilization provides significant insights into the various features and use patterns of intelligent electric car charging infrastructure. The significance of conserving resources, improving efficiency, and adapting infrastructure to meet different needs is highlighted by differences in station capacity, charging patterns across cars, and usage trends. The examination of percentage change emphasizes the ever-changing nature of station consumption, underscoring the need for adaptive management solutions to efficiently optimize charging infrastructure. These results highlight the need of using computer vision technology to simplify charging operations, optimize resource distribution, and improve user experience in EV charging networks.
5 Conclusion

The thorough examination of computer vision applications in intelligent EV charging infrastructure reveals significant insights into the transformative capacity of this technology in revolutionizing charging station capabilities, optimizing resource utilization, and enhancing user experiences.

Improved Charging Station Functions: The examination of charging station data highlights the varied capacities and capabilities across stations. Stations that have larger power outputs and a greater number of charging ports demonstrate an enhanced ability to accommodate several cars at the same time, indicating a strong and reliable infrastructure. In contrast, stations that have a smaller number of ports and lower power outputs may encounter restrictions in their ability to handle many charging sessions at the same time. The presence of this variety underscores the need of making strategic decisions about the allocation and optimization of resources, taking into account factors such as location and projected use.

Efficient Vehicle Identification and Automated Procedures: The vehicle identification data demonstrates the efficacy of computer vision algorithms in precisely detecting and verifying various electric car types. Robust identification with high levels of confidence ensures accurate recognition, enabling smooth automated charging procedures. This functionality simplifies user interactions, minimizes authentication-related wait times, and enhances the efficiency of the charging system.

Analyzing data from charging session logs and utilization to provide valuable insights: Examining charging session records provides significant information about energy usage, session lengths, and station usage. Differences in the way cars are charged indicate varying energy needs and lengths of charging sessions, which in turn affect how charging stations are used. The use study focuses on the discrepancies across stations in terms of sessions, energy consumption, and average length, underscoring the need for adaptive infrastructure management solutions.

Analysis of Dynamic Utilization Patterns and Strategies for Adaptation: The measurement of percentage change illustrates the dynamic patterns in the usage of charging stations. Stations display variations in both the number of sessions and energy use as compared to average values, highlighting the dynamic nature of station utilization. These patterns highlight the need for adaptive management solutions to maximize resource allocation, improve infrastructure efficiency, and efficiently customize charging stations to meet different needs.

Potential Avenues and Consequences for the Future: The results highlight the crucial importance of computer vision in boosting the capabilities of charging infrastructure, improving user experiences, and maximizing the consumption of resources. Future research should prioritize tackling scaling difficulties, enhancing algorithms for various environmental circumstances, and establishing standardized frameworks for smooth integration of computer vision technology. It is essential to use adaptive management techniques that are informed by usage patterns in order to maximize the effectiveness of charging infrastructure and meet the increasing needs of electric vehicle charging networks.

Concluding Statements: To summarize, the incorporation of computer vision technology into intelligent EV charging infrastructure has great potential to transform the future of electric transportation. The study results highlight the need of allocating resources strategically, managing infrastructure adaptively, and continuously improving computer vision applications to enable efficient, user-friendly, and adaptable charging environments. This work greatly enhances our knowledge of how computer vision is transforming the development of intelligent EV charging infrastructure.
References

