Classification of waste in natural environments

Suresh Kumar Kanaparthi1*, Challa Keerthi Reddy1, Tripurari V Sai Rama Sharma1, Aravind Kumar Reddy K1, Nelapatla Sravgi Reddy1 and Athmakuru Vishnu1

1School of Computer Science and Artificial Intelligence, SR University, Warangal 506 371, Telangana, India.

Abstract. A worldwide issue affecting the world is waste disposal; hence, the need to construct a waste detection system that is based on deep learning. Ten wastes are evaluated in this article with a view of providing an integrated framework for measurement and evaluation. It also offers a comprehensive account of the wastes studied further by looking at its detail finding and the challenges they pose as well as views associated with waste detection. Recycling both has economical and ecological benefits which help to eliminate pollution. Technology can now be used to turn waste into resource materials thus recycling more than before especially through the use of deep learning among other technologies.

1 Introduction

Nowadays, pollution through waste has emerged as a major challenge in the environment that has sparked concerns on the well-being of our planet. Recycling is acknowledged as an answer that comes with economic and environmental benefits. The need for operational efficiency drives recycling industry, which is faced with a critical task of developing better approaches to detect wastes. Lack of standardized benchmarks and accepted metrics in waste detection research is a major challenge because it makes it difficult to compare different studies and hinders the advancement of waste detection technologies.

This article’s goal is to close this gap by carefully analyzing over 10 trash datasets that are already accessible, aimed at establishing a base for standard benchmarks and metrics that would improve future research on waste detection. Likewise, the article offers an extensive review on current deep learning-based waste detection techniques. Being aware that deep learning could be used to automate processes of waste detection indicates the significance of understanding what is happening today in such technologies. Thus, the article contributes towards deeper comprehension of this vital area of environmental public relations by highlighting challenges and opportunities for effective detection. Recycling is important in addressing global challenges because it eases the pressure on natural resources, minimizes greenhouse gas emissions as well as energy consumption thereby promoting a more sustainable and environmentally responsible future. Waste pollution is therefore an environmental problem which recycling has significant economic and ecological benefits. This is necessary considering that according to the recycling industry, operational efficiency is a key area to be improved on to make waste management better.

This paper evaluates various datasets from several wastes in order to bridge the gap of non-standardized benchmarks and metrics in this field. The article also provides insights into deep learning-based waste detection techniques.
2 Literature Survey
Uncontrolled solid waste build-up in cities has become a major problem. This can cause environmental pollution, which is dangerous to human health if not managed effectively. Litter separation is an important part of waste management and it has been done traditionally by hand picking. An intelligent waste material classification system that classifies garbage into categories including glass, metal, paper, and plastic using a Support Vector Machine (SVM) and a 50-layer residual net pre-train (ResNet-50) Convolutional Neural Network (CNN) as an extractor.

Gary Thung and Mindy Yang’s garbage image sets were used to test the system achieving an accuracy of 87%. The aim of this intelligent waste material classification system is to make litter separation faster but also reduce or eliminate the need for any human intervention. Thus, the need for effective waste management cannot be gainsaid in view of the alarming data from World Bank which shows that nearly 4 billion tons of global waste are produced annually and forecasts a 70% increase by 2025.

Major methods for getting rid of wastes like landfills and burning are inefficient, costly, and pollute our environment. In addition, landfills sites may affect human health while burn Air pollution and the spread of hazardous materials can be caused by waste. To protect the environment and human health, recycling is singled out as a significant solution that demands effective waste separation into their own recyclable components. Its architecture combines Convolutional Neural Network (CNN) and Support Vector Machine (SVM) algorithms. Due to small size of the trash image dataset, ResNet-50 model which is a type of CNN architecture was employed. The use of residual models by ResNet-50 solves the problem of vanishing gradient as it enables increment in network depth without compromising learning efficiency.

Stochastic Gradient Descent with Momentum (SGDM) is used for training on a core i5 Intel CPU, where ResNet-50 CNN serves as the feature extractor. Extracted features are then classified using multi-Class SVM. Training achieves accuracy rate of 87%. The stabilization of test loss is the criteria for stopping after the 12th epoch.

To sum up, the intelligent waste material classification system offers a promising solution to the challenges of managing waste. Through incorporating advanced technologies like CNNs and SVMs, waste separation speed gets faster and more accurate. The world’s garbage problem continues to worsen, and automated mechanisms are a necessity for safeguarding the environment as well as human health. This level is significant in light of real-world waste management situations in which this system could be applied: it achieved an accuracy of 87%.
In the domain of waste classification, smart systems and advanced technologies are getting great attention towards sustainable development. Kaya introduces a new model of waste classification for sustainable development which involves the use of a smart garbage system [3]. Abdu and Mohd Noor provide an extensive survey on waste detection and classification focusing on deep learning techniques [4]. Ruiz et al. present an image based automatic waste classification approach that combines machine learning with waste management practices [5]. Mao et al. improve convolutional neural networks for recycling waste classification thereby exhibiting better categorization accuracy [6]. Chu et al. suggest a multi-layer hybrid deep learning approach that demonstrates improvements made in waste classification and recycling through deep learning techniques [7]. Waste and waste management from an anthropological perspective, is depicted by Reno who reveals the society and cultures behind it [8]. In the United States, Kahhat et al. explore e-waste management systems and elaborate on challenges associated with electronic waste [9]. A combination model using transfer learning approach for efficient waste classification is presented by Huang et al [10]. Shi et al. develop a waste classification method based on multilayer hybrid convolution neural network, which shows several breakthroughs in deep learning for waste categorization [11].

These works essentially portray a change that waste classification has undergone over time, with an emphasis on how smart system integration and deep learning techniques have been used to address these challenges in context of anthropological perspectives about waste management.

3 Proposed Work

The project centers on creating intricate waste management systems in natural environments through the use of CNN, which is an advanced convolutional neural network. There is an urgent need to manage environmental issues in relation to improper waste disposal and its consequences on ecosystems. In doing so, deep learning and computer vision have been employed to modernize waste incineration and move towards a more environmentally friendly approach to waste management. The project also plays a major role in addressing global environmental problems arising from mismanagement of wastes. This new CNN usage not only improves accuracy in classifying wastes but also offers a basis for solving problems as well as adaptation. Applications may go beyond waste classification thereby influencing the environment at large and triggering international discourse about sustainable waste management.

It aims at both advancing the process and making changes in waste disposal methods. Traditional practices are often unable to handle the mightiness and variety of trash within natural settings. By integrating advanced technologies, this initiative foresees a system capable of altering patterns of garbage, providing immediate insights into what actually has happened and raising the efficiency of waste distribution with higher accuracy rates. The project uses neural networks (CNN) technological innovation as its foundation for performing this kind of task in deep learning and computer vision. CNNs exhibit unique capabilities in image recognition and extraction results, making them ideal for the efficient task of classifying debris in natural environments. The project leverages the adaptability and efficiency of CNNs to identify complex structures in high-resolution images and redefine the waste environment. The steps involved in the entire project process are:

3.1 Data Collection

Data collection process is driven by advanced technology to ensure consistent and representative data collection in a natural environment.
3.1.1 Drone Technology:

Send drones equipped with advanced cameras to capture detailed images of the sky. Conduct surveys in different locations including urban, suburban and rural areas.

3.1.2 Different types of waste:

Consciously distribute several waste kinds including plastic, glass, paper and organic waste to ensure that the model is versatile in processing different products.

3.1.3 Temporal transitions:

Capture images at different times of the day and in different seasons to include changes in physical and lighting conditions, thus improving model changes to the real situation.

3.1.4 Geospatial Mapping:

Use geospatial mapping technology to tag each image with geographic coordinates to associate waste products with environmental characteristics.

Fig. 2. Wet Waste

Fig. 3. Dry Waste

3.2 Data Preprocessing
Data preprocessing phase is an important part of the approach and aims to process the dataset well and consistently for subsequent analysis.

Structure Removal: Uses an established technique to detect and remove irrelevant images and structures that may cause noise in the dataset. This involves the use of image processing techniques and does not provide an accurate representation of the type of waste.

Pixel value normalization: Resolves the illumination variation in different places with pixel value normalization. This important step ensures that the CNN is trained on consistent levels of devices, thus improving its ability to perform effectively under different lighting conditions.

By resizing the Image: Resizing the image according to a model suitable for the CNN input. This not only improves computational efficiency during model training but also ensures data consistency. Standardization is important to avoid bias caused by different images and ratios.

Color Space Adjustment: Color space adjustment can be made as well as changing to strengthen the model's capacity to identify waste types based on color information. This may involve converting the image to a specific color space, such as HSV or LAB, depending on the properties of the residues.

Data Augmentation: Data augmentation technique is used to improve the training set and prevent overfitting. These may include rotations to provide the model with different pattern types and improve its generality for invisible objects.

Data Integrity: Perform integrity checks to identify and correct inconsistencies in data. This includes verifying the accuracy of descriptive metadata, geographic information, and other relevant elements to ensure the reliability of the information.

3.3 Feature Extraction

Leverages the ability of Convolutional Neural Networks (CNN) principle, our feature extraction process is carefully designed to capture the complex content required to get the wastage accurate.

CNN Architecture Design:
- CNN architecture is carefully designed and includes special techniques that make it easier to eliminate. Convolutional layers are used for spatial pattern detection and allow the network to identify local features such as edges, corners, and texture in the input image.
- Pooling layers for subsampling: Layers such as maximum pooling or average pooling are integrated to improve computational efficiency and reduce the size of maps. This reduces the computational load and maintains the important information.
Introduction to ReLU Nonlinearity: More robust decision making such as Rectified Linear Units (ReLU) has been seamlessly integrated into CNN architectures. ReLU represents disparity by creating network model relationships and patterns in the data. This activation function specifically avoids the problem of gradient disappearance and ensures convergence during the learning process.

Batch Normalization: Batch normalization is used to normalize the activity of network neurons and reduce changes in the covariate. These tools improve the stability and convergence of the training process and help improve feature extraction and classification tasks.

3.4 Training Model

Dataset Splitting: Carefully separated into training (80%) and testing (20%) sets is the dataset. This section guarantees that a significant amount of the data is used to train the model, with a distinct piece kept for an objective assessment.

Data augmentation: In order to increase the robustness of the model and prevent weakening, data augmentation is used especially for the training process. Techniques such as rotation and translation add variety and allow the model to experience changes in the waste material during training.

Redundancies (e.g., categorical cross entropy): It is important to choose the right redundancies. Categorical cross-entropy is often used in multi-class classification tasks and provides a measure of the difference between predicted and true classes. It guides the model to reduce errors during training.

Training rate tuning: Training rate is a hyperparameter that determines the step size duration optimization, tuned to balance convergence speed and accuracy. Investigate processes such as planning learning rates or learning transitions to optimize the training process.

Regularization Techniques: Regularization method such as dropout is used to prevent overfitting by randomly disabling neurons during training. This improves the generality of the model by encouraging it to rely on a variety of features.

4 Result Analysis

CNN: In this work CNN is used, which can automatically classify trash into the appropriate categories (Dry or Wet) based on photos of solid waste submitted as input data. The output showed Precision of 97%, Recall of 76%, F1-score of 85%, and Support of 112

Table 1. Resultant of Precision, Recall, F1-score and Support.

<table>
<thead>
<tr>
<th>Classification Report</th>
<th>Precision</th>
<th>Recall</th>
<th>F1-score</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Waste</td>
<td>0.97</td>
<td>0.76</td>
<td>0.85</td>
<td>112</td>
</tr>
<tr>
<td>Wet Waste</td>
<td>0.84</td>
<td>0.98</td>
<td>0.90</td>
<td>140</td>
</tr>
</tbody>
</table>
Precision: The number of true positives divided by the total number of positive predictions, is a metric used by the model to assess the quality of a positive prediction. It is calculated in a similar way.

Formula: \(\text{Precision} = \frac{TP}{TP + FP} \)

Fig. 5. Precision by Class

Looking at the above figure, it can be seen that it is a line graph in two dimensions. It illustrates this for the precision values going down from about 0.98 to approximately 0.9 moving between class 0 and class 1. A blue line represents this slope with dots indicating specific precision levels for both classes.

Recall: The ratio of accurately categorized positive samples to the total number of positive samples.

Formula: \(\text{Recall} = \frac{TP}{TP + FN} \)

Fig. 6. Recall by Class

This image portrays a line graph named “Recall by Class” which indicates how recall increases as it moves from one class towards another.

F1-Score: An evaluation statistic for machine learning called the F1 score quantifies the accuracy of a model. It integrates a model’s precision and recall ratings.

Formula: \(\text{F1-Score} = \frac{2 \times (\text{precision} \times \text{recall})}{\text{precision} + \text{recall}} \)

Fig. 7. F1-Score by Class
In this image, you will find a line chart labeled “F1 Score by Class”. It shows that F1 Score increases as more class instances are classified into class 1 when compared to those in class 0.

Support: The number of samples of the actual response fall into each target value class.

Formula: \(f(x) = \text{sign}(w \cdot x + b) \)

Fig. 8. Support by Class

The Image named “Support by Class”. It is a linear graph where support goes up for each succeeding number beginning from zero up to one inclusive point related to its label.

Fig. 9. Classification Metrics by Class

Fig. 10. Training and Validation Accuracy by Epoch
A novel idea aims to integrate an advanced waste categorization model with the extensive network of Closed-Circuit Television (CCTV) systems in different parts of India. The main objective is to improve waste management efficiency through proper distinction between dry and wet wastes which are crucial for effective municipal waste disposal. In this regard, the integration proposed in this paper enables municipal commissions to follow guidelines stipulated by programs like Swachh Bharat Abhiyan and other relevant environmental policies. The model’s capacity for accurate waste categorization facilitates efficient implementation of responsible and sustainable disposal or recycling methods consistent with cleanliness and sustainability objectives outlined by the Indian government.

Fig. 11. Training and Validation Loss by Epoch

Fig. 12. The object (potato) can be correctly categorized as Wet Waste by the model.

Fig. 13. The object (mask) can be correctly categorized as Dry Waste by the model.
Fig. 14. The object (pulses) can be correctly categorized as Wet Waste by the model.

Fig. 15. The object (cloth) can be correctly categorized as Dry Waste by the model.

Fig. 16. The object (onion) can be correctly categorized as Wet Waste by the model.
A Convolutional Neural Network (CNN) developed based on the DenseNet B0 architecture to classify an object as Dry or Wet Waste. It does an amazing job in distinguishing between them with 98% accuracy. Owing to the dense connectivity patterns and efficient parameter sharing of DenseNet B0 for accurate classification, it is highly efficient in precise classification.

5 Conclusion

A notable improvement in waste classification within natural environments has been the effective usage of Convolutional Neural Networks (CNN) and EfficientNet. The technology is precise, adaptive and has helped to distinguish between wet and dry garbage thus forming the basis for solid waste management strategies in natural areas. This project has shown that it is possible to automate waste sorting through the use of sophisticated image recognition systems, and it may be cited as the leading effort in preserving nature. This makes it a vital tool in ongoing global initiatives towards sustainable environmental practices.

This work, by seamlessly integrating state-of-the-art neural networks, aligns with the growing need for innovative solutions to address environmental challenges, offering a scalable and adaptable framework for automated waste classification. In the broader context of ecological preservation, the successful union of Convolutional Neural Networks and EfficientNet underscores the transformative impact that technology can have in mitigating environmental impact and promoting a harmonious coexistence between human activities and the natural world.

References

