An analysis comparing the mechanical properties of ASS 316L at high and Sub-zero temperatures

Kalluri Anil*, Chilakamarri Aslesha, Vishnu Prasad Mahanti, Dharavath Baloji, Pasupuleti Pavani, Evgeny Vladimirovich Kotov

Abstract

Austenitic Stainless Steel 316L is one among the most frequent ASS scores utilized in modern industry. It is more resistant to corrosion in normal atmospheric conditions in severe settings such as seawater with salt and situations that require protection against chloride corrosion and pitting. While operating effectively at high temperatures, it can also retain because to its resilience and strength at low temperatures, it is a great option for use in the automotive, nuclear, water treatment, marine, and aerospace industries. The mechanical metrics yield quality (YS), percentage elongation, and ultimate tensile strength (UTS) were assessed and compared in this study using experimental data through uniaxial isothermal tensile testing.

1 Introduction

Because of their exceptional properties and range of uses, stainless steels are now considered necessary in today's society. As they have a wide range of uses, from home to high-level. These uses include space exploration, medical stents, kitchenware, furnishings, and nuclear reactors, spacecraft, and so forth. It is critical to identify their practical applications [1-4].

Stainless steels are mostly composed of iron. The term there's stainless because this is enhanced by chromium compound, which makes it able to withstand rusting. In general, up to 16% are pre-sent [5]. Increased Chromium Strengthens resistance against pitting and corrosion in adverse conditions. Aside from Cr, additional elements for alloying are
added to enhance the ideal properties composed of Stainless Steel. Among these are Ni to create an austenitic structure and Mo to boost resistance to pitting [6].

Stainless steel has 3 primary frameworks: martensite, ferrite, and austenite. In 316L, L represents low carbon content, indicating a strong resilience to rust. Austenitic and ferritic phases are frequently seen in these grades. The limited quantity of ferrite is present, they are ductile and strong, and they retain their characteristics at high temperatures [9]. Austenitic steels, for instance, are completely non-magnetic [7]. In the modern world, austenitic steels are more efficient than other types of steel. There are many more grades available, including 316L, 316LN, 304L, and 317LN [8]. It is used in cryogenic as well as high temperatures. When austenite is worked at temperatures below zero, concentration varies, as does the precipitation conductivity of carbides. As a result, the characteristics must be analyzed even in below-freezing weather. Cryogenic transfer lines, such as tubes and thin-walled shells, and cryogenic control valves working at 1.9 K are therefore examples of cryogenic uses [10]. When combined, built ASS316L samples are inspected, they show a heterogeneous microstructure, as well as disturbances and divisions [11]. When friction welding two samples, ASS316L and 1045 MCS, together, the hardness and forging pressure increase significantly [12]. When boron is added.

2 Behaviour of the material

2.1 Material

Because ASS 316L is extensively utilised this research assesses and contrasts the mechanical properties of ASS 316L in applications requiring both high and low temperatures, including those found in ships, aircraft, nuclear power plants, offshore buildings, and LNG carriers. Utilising an electric discharge machine (EDM) with a wire-cut attachment, the specifications were cut from cold-rolled ASS 316L sheet that was 0.6 mm thick in order to get a very high level of polish and accuracy. Tensile testing in succession are carried out in both negative and increased temperatures. Table 1 displays the spectrometer's analysis of the ASS 316L alloy's chemical composition as received. As seen in Fig. First, the specimens are chopped in three orientations (see Fig. 2).
2.2 Warm disfigurement behaviour

Typical real stress vs true strain charts are obtained from a range of temperatures using uniaxial isothermal tensile testing, as shown in Figures 5-7. It is shown that the temperature of deformation has a direct correlation with flow stress. As the temperature rises during warm deformation, the flow stress drastically reduces, as seen in Fig. 5. The flow stress first peaks, then steadily decreases to almost a constant stress, and then experiences a downturn. Because of this, the proportion of elongation rises noticeably as temperature rises. These curves usually arise from the interplay between dynamic recrystallization and dynamic recovery. Dynamic softening is caused by deformation at higher temperatures, by enhancing Grain boundary motion and dynamic recrystallization nucleation rate. Because greater temperatures can enhance the mobility of grain boundaries, which is beneficial for abundant dynamic nucleation of recrystallization, flow stresses are significantly reduced as temperatures rise. As a result, dynamic recrystallization behaviour can be noticeably enhanced at relatively lower temperatures. Fig. 6 further shows the impact of elongation rate at the specific increased temperature of 825 °C. Faster strain rates are thought to reduce the percentage of elongation at a certain temperature because the grains have less time to deform at higher strain rates and notably increase in overall strength [23]. Stated differently, the strength and flexibility of the conduct demonstrates a high dependence on temperature and the rate of deformation. Fig. 7 illustrates the planar isotropy of the material; however, the test results show no contrast in three distinct orientations. This might be because the fortifying hastens disperse randomly.
2.3 Sub-Zero deformation behaviour

When compared to warm temperatures, ASS 316L's behaviour is less variable in negative temperatures. As anticipated, the genuine stress is determined to have a little variation in its genuine strain values, the values range from 897.1 Mpa at 0 °C at the lowest to 1065.32 Mpa at 50 °C at the highest, as demonstrated in Figure 9. temps below zero typically result in a significant drop lowers its flexibility at negative temperatures due to a rise in slip system stress and an increase in the austenitic phase's SFE (stacking fault energy), which makes cross-slip challenging and confines dislocations to their original form. Similar to this, tough cross slips will result in greater strain hardening exponents and higher flow stresses. At negative temperatures, all specimens exhibit the secondary hardening behaviour, one of the main features. Additionally, there appears to be reports of a yield plateau occurrence. Additionally, it can be deduced from Fig. 9 that a little drop in the sheet's ultimate strength and a minimal rise in its yield strength were seen with an increase in cross-head velocity. Work hardening often results via the creation and migration inside the crystal structure of the substance, of dislocations. Thus, this method may be used to reinforce a variety of ductile materials.
3 Conclusion

✓ ASS 316L's strength and plasticity behaviour show substantial dependence on strain rate and temperature during deformation at extreme temperatures, whereas little change is seen with regard to various orientations.

✓ As the deformation temperatures rise, a notable increase in the percentage elongation and a considerable drop in the flow stress are seen.

✓ When deformation occurs at negative temperatures, the ultimate tensile strength decreases and the yield strength increases along with an increase in crosshead velocity.

✓ It appears that a yield plateau phenomena occurs, and strain hardening is a process that predominates in below-freezing temperatures.
References


16. 01021 (2024) MATEC Web of Conferences https://doi.org/10.1051/matecconf/202439201021


