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Abstract. The article discusses the application of the metaheuristic algorithm

of global constrained optimization for solving the problem of finding the opti-

mal open-loop control for nonlinear switching deterministic dynamical systems.

The quality of control is assessed by the value of the functional defined on in-

dividual trajectories. The optimal control problem is reduced to a parametric

optimization problem, which is solved using the MSOMA algorithm, which be-

longs to the evolutionary group. The MSOMA algorithm is a new algorithm

based on the SOMA self-organizing migration algorithm. The modification

consists in identifying three leaders among the individuals forming the current

population. For each member of the population, two clones are generated with

the same position. Thus, in fact, three populations are generated, each of which

then realizes a migration cycle (evolutionary process) relative to one of the three

selected leaders. A step-by-step algorithm for piecewise-constant, piecewise-

linear, quadratic spline and cubic spline methods of control laws approximation

is proposed. The effectiveness of the proposed method is demonstrated by the

example of solving optimal control problems for switching systems with two

and three subsystems. The influence of the parameters of the MSOMA algo-

rithm on the quality of the obtained result is investigated. Comparison of the

operation of the algorithm with the known solution is carried out.

1 Introduction

The solution of the problem of finding the open-loop optimal control of deterministic dynam-

ical switching systems is considered. The object model is described by a system of ordinary

differential equations. The controls are constrained by a parallelepiped type. The quality of

control is assessed by the value of the quality functional.

For the numerical solution of the problem of finding the optimal open-loop control of

deterministic switching systems, as a rule, the necessary optimality conditions in the form

of the maximum principle are applied together with methods for solving two-point boundary

value problems (shooting method, residual minimization, grid method, differential sweep

method, finite element method, etc.) [1]. The collocation method, methods of approximation

of control by piecewise-constant, piecewise-linear functions, splines, expansions in various

systems of basis functions, spectral and quasi-spectral methods still remain popular [2–6].
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In most approaches, the problem of finding the optimal control is reduced to the problem of

parametric optimization, for the solution of which both classical methods of zero, first and

second orders are used, as well as new metaheuristic algorithms [7, 8].

In this article, to solve optimal control problems, the transition to a discrete problem

is carried out, and then the solution to the original problem is constructed by interpolating

the values at the grid nodes. When searching for a control in the form of a piecewise con-

stant, piecewise linear function or splines of different orders, the calculation formulas of the

Runge–Kutta method of the fourth order are used, into which expressions for the control

law are substituted corresponding to the used type of approximation. Next, a single-criterion

optimization algorithm is used to select the optimal values of the parameters that define the

desired control.

As an optimization method, it is proposed to use a modified self-organizing migration

algorithm MSOMA [9]. The MSOMA algorithm is a new algorithm based on the SOMA

self-organizing migration algorithm [10]. A computational procedure is proposed, the effec-

tiveness of which is demonstrated by the example of optimal control problems for a chemical

process in a mixing reactor and a singular optimal control problem [7].

2 Statement of the problem

The behavior of the control object model is described by a system of differential equations:

ẋi(t) = fi(t)
(

t, xi(t)(t), xi(t)(t − h), ui(t)(t)
)

, (1)

where xi(t) is system state vector, xi(t) =
(
x1,i(t), . . . , xn,i(t)

)T
∈ Rn; t is time, t ∈ T = [t0, t f ]

is the time interval of the system operation; the start t0 and end points t f of the pro-

cess are set; h is time lag; ui(t) is control vector, ui(t) =
(

u1,i(t), . . . , uq,i(t)

)

∈ Ui(t)(t) ⊆ R
q;

Ui(t)(t) is the set of possible control values in the mode i(t), described by the direct prod-

uct of segments [aj,i(t)(t), bj,i(t)(t)], j = 1, . . . , q; fi(t)(t, x, y, u) is continuously differentiable

vector function of the right parts of the subsystem equation with number i, fi(t)(t, x, y, u):

T×Rn×Rn×Ui(t)(t)→ R
n; i(t) is piecewise constant function of switching modes, i(t) = ik for

t ∈ [tk, tk+1), k = 0, 1, . . . ,K, where K is number of switches, tK+1 = t f ; ik ∈ I = {1, 2, . . . ,M}

is multiple switching modes, M is the number of subsystems; i(t0) = i0, {tk}
K
k=1

is many

switching points tk ∈ T .

The change of one subsystem to another is determined by a switching sequence σ over a

period of time [t0, t f ]:

σ =
(

(t0, i0), (t1, i1), . . . , (tK , iK)
)

, (2)

where 0 ≤ K < ∞, t0 ≤ t1 ≤ . . . ≤ tK ≤ t f , ik ∈ I, k = 0, . . . ,K. Each element of the sequence

contains the moment of switching from one subsystem to another and the number of the next

(active) subsystem.

Initial conditions:

xi(t0)(t) = ϕi(t0)(t), t ∈ [t0 − h, t0), xi(t0)(t0) = x0,i(t0), (3)

where x0,i(t0) is initial state of the system, ϕi(t0)(t) : R1 → Rn is a piecewise continuous function

of the system’s prehistory.

At the moments of switching, the state vector of the system generally changes according

to the transition equation:

x(tk) = Mi(tk)i(tk−0)x(tk − 0) + Ti(tk)i(tk−0), (4)
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At the moments of switching, the state vector of the system generally changes according

to the transition equation:

x(tk) = Mi(tk)i(tk−0)x(tk − 0) + Ti(tk)i(tk−0), (4)

where Mi j is transition matrix of size (n × n), Ti j ∈ R
n is the transition vector from the sub-

system with the number j to a subsystem with a number i. If Ti j ≡ θ, where θ is zero vector,

then linear jumps of the form x(tk) = Mi(tk)i(tk−0)x(tk − 0) are observed in the system, and if

Mi j ≡ E is a single matrix of order n, then transitions between subsystems occur while main-

taining continuity of trajectories. Since the system (1) is a system with a delay, after the

transition to a new subsystem, the background of the system with the number is used i(tk−0):

xi(tk)(t) = xi(tk−0)(t), t ∈ [tk − h, tk).

The set of acceptable controls U0 form multi-link piecewise continuous func-

tions u(t) =
�iK

i(t)=i0
ui(t)(t), satisfying the constraint ui(t)(t) ∈ Ui(t)(t), ∀t ∈ [t0, t f ], i(t) = ik,

i = 0, 1, . . . ,K.

The switching system is a corte S = {D, F̄}, where D(I, Γ) is a directed graph with a set of

vertices I = {1, 2, . . . ,M} and lots of arcs Γ, where ei, j ∈ Γ, ei, j = �i, j� is the arc coming out

of the vertex. i ∈ I. and entering the vertex j ∈ I, as well as many vector functions fi(t) ∈ F̄,

where F̄ = { f1(t, x, y, u), . . . , fM(t, x, y, u)}.

Set of vertex heirs i this is a set of nodes reachable from a vertex i: succ(i) ∈ I,

ik+1 ∈ succ(ik), k = 0, . . . ,K. The graph is given by the adjacency matrix.

The performance index to be minimized is given by

I =

� t f

t0

f 0
i(t)

�

t, xi(t)(t), xi(t)(t − h), ui(t)(t)
�

dt + F
�

xiK
(t f )
�

+

K�

k=0

s
�

xi(tk)(tk), i(tk), i(tk − 0)
�

, (5)

where f 0
i(t)

(t, x, y, u), F(x) is given continuous functions, s
�

xik (tk), i(tk), i(tk − 0)
�

is penalty

function for switching from one subsystem with a number i(tk − 0) to another subsystem with

a number i(tk).

In order to calculate the value of the functional I it is necessary to find the trajectory of the

system x(t) =
�iK

i(t)=i0
xi(t)(t), formed by the trajectories of subsystems (links) determined by

the switching sequence (2) corresponding to the permissible control u(t), from the equation

of the system (1) taking into account the initial condition (3) and the transition equation (4).

It is required to find such a switching sequence σ∗ =
�

(t0, i0), (t1, i1), . . . , (tK , iK)
�

and con-

trol u∗(t) =
�iK

i(t)=i0
u∗

i(t)
(t) from the set of permissible controls on which the minimum value

of the functional I is achieved.

3 Solution search strategy

The basis of the strategy is the decomposition of control in the interval [tk, tk+1) according

to the basis system of functions [11] using the saturation function, taking into account the

specified control constraints:

uj,i(t)(t) = sat






N�

m=0

uj,i(t),m · C(m, t)





=

=






aj,i(t)(t), if






N�

m=0

uj,i(t),m ·C(m, t)





< aj,i(t)(t),






N�

m=0

uj,i(t),m ·C(m, t)





, if aj,i(t)(t) ≤






N�

m=0

uj,i(t),m ·C(m, t)





≤ bj,i(t)(t),

bj,i(t)(t), if






N�

m=0

uj,i(t),m ·C(m, t)





> bj,i(t)(t).

(6)
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where sat
��N

m=0 uj,i(t),m ·C(m, t)
�

is saturation control function, t ∈ [tk, tk+1), j = 1, . . . , q, N is

the number of unknown decomposition coefficients set by the user.

At the same time, the structure of the block matrix is a column of optimized control

parameters

A =









[K]
����

number
of switches

[t1t2 · · · tK]
������������������

moments of switching
subsystems

[i0i1 · · · iK]
������������������

numbers of sequentialy
active subsystems









[u1,0,0u1,0,1 · · · u1,0,N]
��������������������������������������������

control decomposition coefficients u1,i0

· · · [uq,0,0uq,0,1 · · · uq,0,N]
��������������������������������������������

control decomposition coefficients uq,i0





��������������������������������������������������������������������������������������������������������������������������������������������������������������

control ui0
subsystem i0





[u1,K,0u1,K,1 · · · u1,K,N]
������������������������������������������������

control decomposition coefficients u1,iK

· · · [uq,K,0uq,K,1 · · · uq,K,N]
������������������������������������������������

control decomposition coefficients uq,iK





����������������������������������������������������������������������������������������������������������������������������������������������������������������

control uiK
subsystem iK





T

.

(7)

The optimization problem is to choose the vector coefficients by minimization of the cost

functional value (5).

4 Algorithm

Step 1. Set:

Kmax is a maximum number of switches from one subsystem to another;

Nmax is a maximum number of intervals of the sign of the control of each subsystem;

NK is a maximum number of attempts to improve the number of switches;

Nsw is a maximum number of attempts to improve the switching moments from one sub-

system to another with a fixed number of switches;

Nmode is a maximum number of attempts to search for sequences of changing mode num-

bers with a fixed number of switches and switching moments;

Ncontr is a maximum number of attempts to search for subsystem control values.

Step 2. Start the iteration counter to improve the number of switches.

Step 3. (The first level of the search procedure). Generate a random number of switches

in a switching sequence K ∈ {0, 1, . . . ,Kmax} and fix it. One can generate a number K, using

a uniform distribution law on a segment [0,Kmax], rounding with a disadvantage, removing

the value already used in the search from the set of acceptable values. One can also start with

K = 0, by increasing the number of switches by one each time Check the iteration counter to

improve the number of switches. If the number NK is reached, then complete the procedure

and proceed to step 9. If not, then enter the resulting solution into the Pool set and continue.

Start the counter of iterations of the search for switching moments.

Step 4. (Second level of the search procedure.) The time interval of the system operation

[t0, t f ] should be divided into segments [t0, t1], [t1, t2], . . . , [tK , t f ], where {tk}
K
k=1

is a sequence

of switching moments generated randomly with a condition check t0 ≤ t1 ≤ . . . ≤ tK ≤ t f ; fix

4
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[t0, t f ] should be divided into segments [t0, t1], [t1, t2], . . . , [tK , t f ], where {tk}
K
k=1

is a sequence

of switching moments generated randomly with a condition check t0 ≤ t1 ≤ . . . ≤ tK ≤ t f ; fix

the resulting sequence. Check the iteration counter of the search for switching moments. If

the number Nsw is reached, then go to step 3.

Start the counter of attempts to search for a sequence of subsystem shift numbers.

Step 5. (The third level of the search procedure.) Randomly generate a sequence based on

a given adjacency matrix σ =
�

(t0, i0), (t1, i1), . . . , (tK , iK)
�

, containing information about the

change of one subsystem to another. From the set of heirs of each of the vertices of the graph,

one of the possible heirs is selected: i0 ∈ I, ik+1 ∈ succ(ik), ik+1 ∈ I, k = 0, 1, . . . ,K − 1. Fix

the resulting sequence. Check the iteration counter of searching for a sequence of subsystem

shift numbers. If the number Nmode is reached, then go to step 4.

Start the counter for the number of attempts to search for subsystem control values.

Step 6. (The fourth level of the search procedure).

Set the control on the interval [tk, tk+1) in the form of a decomposition of the desired

control law according to a basic system of functions using a saturation function that takes

into account the specified control constraints (6).

Thus, the control of the switching system can be represented by a block matrix-column (7)

Step 7. Using the control u(t) =
�iK

i(t)=i0
ui(t)(t), set by the matrix A, find the trajectory of

the switching system x(t)=
�iK

i(t)=i0
xi(t)(t) and calculate the value of the control quality functio-

nal (5): I=
� t f

t0
f 0
i(t)

�

t, xi(t)(t), xi(t)(t−h), ui(t)(t)
�

dt+F(xiK
(t f ))+

�K
k=0 s
�

xi(tk)(tk), i(tk), i(tk − 0)
�

.

To calculate the functional, it is required to integrate the system (1) together with the equa-

tion for the auxiliary variable: ẋi(t),n+1 = f 0
i(τ)

�

τ, xi(τ)(τ), xi(τ)(τ − h), ui(τ)(τ)
�

, xi0 ,n+1(t0) = 0,

xi(tk),n+1(tk) = xi(tk+1),n+1(tk) using the switching sequence (2), the initial conditions (3) and

the transition equation (4) using the MSOMA [12] method.

Step 8. Go to the next matrix-column to find the minimum functional I by one of the

metaheuristic methods, generating a new piecewise constant control for each of the active

subsystems (step 6). Check the counter of the number of attempts to search for subsystem

control values. If the number Ncontr is reached, then go to step 5.

Step 9. Choose the best solution from the Pool set.

5 Numerical examples

Example 1

Consider a switching system consisting of three nonlinear subsystems in table 1.

Table 1. Nonlinear subsystems

Subsystem 1 Subsystem 2 Subsystem 3






ẋ1 = x1 + u sin x1

ẋ2 = −x2 − u cos x2






ẋ1 = x2 + u sin x2

ẋ2 = −x1 − u cos x1






ẋ1 = −x1 − u sin x1

ẋ2 = x2 + u cos x2

Let t0 = 0, t f = 3. The system switches at a moment in time t = t1 from subsystem 1 to

subsystem 2 and at a time t = t2 from subsystem 2 to subsystem 3 (0 ≤ t1 ≤ t2 ≤ 3). Initial

conditions: x1(0) = 2, x2(0) = 3. Initial switching time values: t1 = 1, t2 = 2.

It is required to find optimal switching moments t1, t2 and optimal control u(t), providing

a minimum of the cost functional:

I =
1

2

� 3

0

��

x1(t) − 1
�2
+
�

x2(t) + 1
�2
+ u2(t)

�

dt +
1

2

�

x1(3) − 1
�2
+

1

2

�

x2(3) + 1
�2
→ min .
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Table 2 shows the results of the influence analysis of the MSOMA parameters for various

types of control law approximations.

Table 2. Influence of MSOMA parameters for different types of approximation

Parameters min I min I min I min I

NS tep PRT NP Migration MinDist
piecewise

constant

piecewise

linear

quadratic

spline

cubic

spline

20 0.6 30 50 10−4 5.457996 5.43687 5.436123 5.438055

40 0.6 60 50 10−6 5.461033 5.43429 5.434128 5.434687

30 0.5 40 50 10−6 5.456356 5.43828 5.441293 5.437901

50 0.4 70 60 10−7 5.458779 5.43400 5.434498 5.435280

Decomposition coefficients in control at the best value (with quadratic spline control ap-

proximation):

u(·) =
�

−1.80061465; −1.16927298; −0.94401819; −0.1357218; 0; 0; −0.07919648;

− 0.04200354; −0.07259585; −0.14019546
�

.

Switching moments (with the quadratic spline approximation of control law): t1 = 0.22366355,

t2 = 1.03408362. The obtained control law and the phase trajectory are shown in figure 1.

Figure 1. Control law using the quadratic spline (a) and phase trajectory (b)

The known solution was obtained in [13]: t
opt

1
= 0.2262, t

opt

2
= 1.0176, Iopt = 5.4399. So,

the best solution obtained by the presented algorithm is better by about 0.005.

Example 2

Consider a switching system consisting of two linear subsystems in table 3.

Let t0 = 0, t f = 2. The system switches once at a time t1 from subsystem 1 to subsystem 2

(0 ≤ t1 ≤ 2). In this case, switching occurs with a discontinuous jump:






x1(t1+) = x1(t1−) + 0.2,

x2(t1+) = x2(t1−) + 0.2.
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Table 2 shows the results of the influence analysis of the MSOMA parameters for various

types of control law approximations.

Table 2. Influence of MSOMA parameters for different types of approximation

Parameters min I min I min I min I

NS tep PRT NP Migration MinDist
piecewise

constant

piecewise

linear

quadratic

spline
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spline

20 0.6 30 50 10−4 5.457996 5.43687 5.436123 5.438055

40 0.6 60 50 10−6 5.461033 5.43429 5.434128 5.434687

30 0.5 40 50 10−6 5.456356 5.43828 5.441293 5.437901

50 0.4 70 60 10−7 5.458779 5.43400 5.434498 5.435280

Decomposition coefficients in control at the best value (with quadratic spline control ap-

proximation):

u(·) =
�

−1.80061465; −1.16927298; −0.94401819; −0.1357218; 0; 0; −0.07919648;

− 0.04200354; −0.07259585; −0.14019546
�

.

Switching moments (with the quadratic spline approximation of control law): t1 = 0.22366355,

t2 = 1.03408362. The obtained control law and the phase trajectory are shown in figure 1.

Figure 1. Control law using the quadratic spline (a) and phase trajectory (b)

The known solution was obtained in [13]: t
opt

1
= 0.2262, t

opt

2
= 1.0176, Iopt = 5.4399. So,

the best solution obtained by the presented algorithm is better by about 0.005.

Example 2

Consider a switching system consisting of two linear subsystems in table 3.

Let t0 = 0, t f = 2. The system switches once at a time t1 from subsystem 1 to subsystem 2

(0 ≤ t1 ≤ 2). In this case, switching occurs with a discontinuous jump:






x1(t1+) = x1(t1−) + 0.2,

x2(t1+) = x2(t1−) + 0.2.

Table 3. Nonlinear subsystems

Subsystem 1 Subsystem 2






ẋ1 = 2x1 + u

ẋ2 = −x2






ẋ1 = −x1

ẋ2 = 2x2 + u

Initial conditions: x1(0) = 4, x2(0) = 4. It is required to find the optimal switching mo-

ment t1 and optimal control u(t), providing a minimum of the cost functional:

I =
1

2

� 2

0

u2(t) dt +
1

2
x2

2(t1−) +
1

2
(x1(2) − 1)2

+
1

2
(x2(2) + 4)2 → min .

Table 4 shows the results of the influence analysis of the MSOMA parameters for various

types of control law approximations.

Table 4. Influence of MSOMA parameters for different types of approximation

Parameters min I min I min I min I

NS tep PRT NP Migration MinDist
piecewise

constant

piecewise

linear

quadratic

spline

cubic

spline

20 0.4 30 50 10−4 11.57030 10.8387 10.83212 10.8323884

70 0.6 70 50 10−6 11.43335 10.7963 10.83194 10.8802788

30 0.6 40 50 10−6 11.43360 10.7963 10.83212 10.880272

40 0.5 50 50 10−7 11.42422 10.7963 10.83195 10.880272

Coefficients of expansion into controls at the best value (with piecewise linear approximation):

u(·) =
�

−2.09646176; −1.09902696; −0.57844942; 8; 5.55796566; 1.36358511
�

.

The obtained control law and the phase trajectory are shown in figure 2. Switching moment

(with piecewise linear approximation): t1 = 0.64045776.

Figure 2. Control law using piecewise linear approximation (a) and phase trajectory (b)

The known solution: t
opt

1
= 0.6375, Iopt = 10.7165. So, the best solution obtained by the

presented algorithm is about 0.08 worse.
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6 Conclusion

In this work, a strategy, a step-by-step algorithm and corresponding software for the approx-

imate solution of the problem of optimal open-loop control of switching systems have been

developed. The presented algorithm and program are tested on the examples of solving op-

timal control problems for switching systems with two and three subsystems. The influence

of the parameters of the MSOMA algorithm on the quality of the obtained result is investi-

gated. Comparison of the operation of the algorithm with a known solution, as well as with

various methods of control laws approximation is given. Recommendations on the choice of

algorithm parameters are given.
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