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Abstract. A study was performed to investigate the effect of using Euler-
Lagrange optimization decreasing energy demands for given electro-
mechanical systems exploiting electric drives, which are typical for 
industrial and transportation applications e.g. robotic arm control, train 
movement control etc.  

1 Introduction 
Differential equations and systems of the differential equations describes many types of real 
physical systems of various disciplines of technical praxis. The theory of differential 
equations is one of the most important parts of modern applied mathematics. Differential 
equations can be divided into several types– classical ordinary, partial differential equations 
and functional differential equations 1. Apart from describing the properties of the equation 
itself, these classes of differential equations can help inform the choice of approach to a 
solution. 
In this paper we discus some relations between differential equations, variational problem 
and energy optimal control of electric drives. The starting point for describing a drive 
control system is the is the differential equation modelling the motor and its driven load 2, 
3, 4. The basic form of this equations is applicable to all types of electrical motors 

𝐽𝐽𝑟𝑟𝜔̇𝜔 = 𝑀𝑀𝑒𝑒 −𝑀𝑀𝐿𝐿, (1) 

where 𝐽𝐽𝑟𝑟 is moment of inertia to the shaft of electric motor,𝑀𝑀𝑒𝑒 is the electrical torque 
developed by the motor,𝑀𝑀𝐿𝐿 is the load torque acting on the rotor inertia to the rotor angular 
acceleration 𝜔̇𝜔. 
In paper 4, 5 the authors supposed the load torque in the form 

𝑀𝑀𝐿𝐿 = 𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶𝜔𝜔2, (2) 

wherethe constants 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶 represent Coulomb, viscous and aerodynamic friction terms. 
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2 Theoretical background 
 
The cost function which we have to minimalised is defined by the relation 

𝐼𝐼 = 𝑅𝑅𝑐𝑐
𝑘𝑘𝑡𝑡2
∫ 𝑀𝑀𝑒𝑒2
𝑇𝑇𝑚𝑚
0 d𝑡𝑡 + ∫ 𝑀𝑀𝐿𝐿

𝑇𝑇𝑚𝑚
0 𝜔𝜔 d𝑡𝑡 → min, (3) 

where 𝑅𝑅𝑐𝑐is the stator resistance and 𝑘𝑘𝑡𝑡 is the torque constant. The first part of (3) represents 
electrical losses in copper and the second part of (3) describes the mechanical-friction 
losses during the manoeuvre time 𝑇𝑇𝑚𝑚.  
Now we obtain the corresponding Lagrange function 

𝐿𝐿 = 𝑅𝑅𝑐𝑐
𝑘𝑘𝑡𝑡2
𝑀𝑀𝑒𝑒2 + 𝑀𝑀𝐿𝐿𝜔𝜔 + 𝜆𝜆1(𝐽𝐽𝑟𝑟𝜔̇𝜔 − 𝑀𝑀𝑒𝑒 + 𝑀𝑀𝐿𝐿) + 𝜆𝜆2(𝜑̇𝜑 − 𝜔𝜔). (4) 

By deriving this function according to the variable 𝜔𝜔 and taking into account the properties 
of the angular velocity we get 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
= d
d𝑡𝑡
(𝜕𝜕𝜕𝜕
𝜕𝜕𝜔̇𝜔
)    ⇒   𝑀𝑀𝐿𝐿 − 𝜆𝜆2 =

d
d𝑡𝑡
(𝜆𝜆1𝐽𝐽𝑟𝑟) = 𝐽𝐽𝑟𝑟𝜆𝜆1̇. (5) 

In a similar way for the variable 𝜑𝜑 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
= d
d𝑡𝑡
(𝜕𝜕𝜕𝜕
𝜕𝜕𝜑̇𝜑
)    ⇒   0 = d

d𝑡𝑡
(𝜆𝜆2)    ⇒   𝜆𝜆2̇ = 0. (6) 

and the variable 𝑀𝑀𝑒𝑒 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑀𝑀𝑒𝑒

= d
d𝑡𝑡
( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑀𝑀𝑒𝑒̇
)    ⇒   0 = 2 𝑅𝑅𝑐𝑐

𝑘𝑘𝑡𝑡2
𝑀𝑀𝑒𝑒 − 𝜆𝜆1    ⇒  𝑀𝑀𝑒𝑒 = (

𝑘𝑘𝑡𝑡2

2𝑅𝑅𝑐𝑐
)⏟  

𝑘𝑘𝑚𝑚

𝜆𝜆1 = 𝑘𝑘𝑚𝑚𝜆𝜆1. (7) 

Now from previous and from (1), also if we suppose 𝜑̇𝜑 = 𝜔𝜔, we get system of four 
equations 

𝐽𝐽𝑟𝑟𝜆𝜆1̇ = 𝑀𝑀𝐿𝐿 − 𝜆𝜆2, (8) 

𝜆𝜆2̇ = 0, (9) 

𝐽𝐽𝑟𝑟𝜔̇𝜔 = 𝑀𝑀𝑒𝑒 −𝑀𝑀𝐿𝐿 = 𝑘𝑘𝑚𝑚𝜆𝜆1 − 𝑀𝑀𝐿𝐿, (10) 

𝜑̇𝜑 = 𝜔𝜔. (11) 

In our case the we suppose that the load torque is constant, i.e.:𝑀𝑀𝐿𝐿 = 𝐴𝐴 = const. So,the 
system is linear nonhomogeneous systems of differential equations in the form 

𝜆𝜆1̇ = −
𝜆𝜆2
𝐽𝐽𝑟𝑟
+ 𝐴𝐴
𝐽𝐽𝑟𝑟

, (12) 

𝜆𝜆2̇ = 0, (13) 

𝜔̇𝜔 = 𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟
𝜆𝜆1 −

𝐴𝐴
𝐽𝐽𝑟𝑟

, (14) 

𝜑̇𝜑 = 𝜔𝜔, (15) 

which can be written also matrix notation as 

(

 
𝜆𝜆1̇
𝜆𝜆2̇
𝜔̇𝜔
𝜑̇𝜑)

 =

(

 
 
0 − 1

𝐽𝐽𝑟𝑟
0 0

0 0 0 0
𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟

0 0 0
0 0 1 0)

 
 
(

𝜆𝜆1
𝜆𝜆2
𝜔𝜔
𝜑𝜑

) +

(

 
 

𝐴𝐴
𝐽𝐽𝑟𝑟
0
− 𝐴𝐴
𝐽𝐽𝑟𝑟
0 )

 
 
   ⇔    𝑿̇𝑿 = 𝑨𝑨𝑨𝑨 + 𝑩𝑩. (16) 

The general solution of this system has got the form 

(7) 

(16) 
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𝑿𝑿 = 𝒀𝒀 + 𝒀𝒀𝑝𝑝, (17) 

where𝒀𝒀is the homogeneous solution of the system 𝑿̇𝑿 = 𝑨𝑨𝑨𝑨 and 𝒀𝒀𝑝𝑝 is some particular solution of 
the system (16). 

The eigenvalues 𝜆𝜆𝑖𝑖 of the matrix 𝑨𝑨are the roots of the characteristic equation 
det(𝑨𝑨 − 𝜆𝜆𝑬𝑬) = 0. (18) 

We obtain 𝜆𝜆1,2,3,4 = 0, which is an eigenvalue of the matrix 𝑨𝑨with the multiplicity 𝑘𝑘 = 4. 

If we consider the system of linearly independent vectors 

𝒗𝒗1, 𝒗𝒗2, 𝒗𝒗3, 𝒗𝒗4, (19) 

Which satisfy the following relations 
𝑨𝑨𝒗𝒗1 = 𝜆𝜆𝒗𝒗1,

𝑨𝑨𝒗𝒗𝑗𝑗 = 𝜆𝜆𝒗𝒗𝑗𝑗 − 𝒗𝒗𝑗𝑗−1,
 (20) 

for 𝑗𝑗 = 2,3,4, then the functions  

𝒙𝒙𝑖𝑖 = 𝒘𝒘𝑖𝑖(𝑡𝑡) ∙ e𝜆𝜆𝜆𝜆 = 𝒘𝒘𝑖𝑖(𝑡𝑡), (21) 

for 𝑖𝑖 = 1,2,3,4, where 
𝒘𝒘1(𝑡𝑡) = 𝒗𝒗1,

𝒘𝒘2(𝑡𝑡) = 𝑡𝑡𝒗𝒗1 + 𝒗𝒗2,

𝒘𝒘3(𝑡𝑡) =
𝑡𝑡2

2
𝒗𝒗1 + 𝑡𝑡𝒗𝒗2 + 𝒗𝒗3,

𝒘𝒘4(𝑡𝑡) =
𝑡𝑡3

6
𝒗𝒗1 +

𝑡𝑡2

2
𝒗𝒗2 + 𝑡𝑡𝒗𝒗3 + 𝒗𝒗4,

 (22) 

are linearly independent solutions of the homogeneous system 𝑿̇𝑿 = 𝑨𝑨𝑨𝑨. The vectors 𝐯𝐯𝑖𝑖 with 
the properties (21) are called generalized eigenvectors of the matrix 𝑨𝑨. To obtain these 
generalized eigenvectors we use so-called Weyr's theory of matrices [6]. After this 
procedure we get these generalized vectors 

𝒗𝒗1 =

(

 
 
0
0
0
−𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟2 )

 
 
, 𝒗𝒗2 =

(

 

0
0
−𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟2

0 )

 ,   𝒗𝒗3 =

(

 
 
−1
𝐽𝐽𝑟𝑟
0
0
0 )

 
 
,   𝐯𝐯4 = (

0
1
0
0

), (23) 

and the homogeneous solution of the system can be written in the form 

 

3
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𝒀𝒀 = (

𝜆𝜆1
𝜆𝜆2
𝜔𝜔
𝜑𝜑

) = 𝐶𝐶1

(

 
 
0
0
0
−𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟2 )

 
 
+ 𝐶𝐶2

(

  
 
𝑡𝑡

(

 
 
0
0
0
−𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟2 )

 
 
+

(

 

0
0
−𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟2

0 )

 

)

  
 

+𝐶𝐶3

(

  
 𝑡𝑡2
2

(

 
 
0
0
0
−𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟2 )

 
 
+ 𝑡𝑡

(

 

0
0
−𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟2

0 )

 +

(

 
 
−1
𝐽𝐽𝑟𝑟
0
0
0)

 
 

)

  
 

    +𝐶𝐶4

(

  
 𝑡𝑡3
6

(

 
 
0
0
0
−𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟2 )

 
 
+ 𝑡𝑡2

2

(

 

0
0
−𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟2

0 )

 + 𝑡𝑡

(

 
 
−1
𝐽𝐽𝑟𝑟
0
0
0)

 
 
+ (

0
1
0
0

)

)

  
 
,

 (24) 

where 𝐶𝐶1, 𝐶𝐶2, 𝐶𝐶3, 𝐶𝐶4 ∈ ℝ are real constants. 

And also is it easy to proof that the function 

𝒀𝒀𝑝𝑝 = (

𝜆𝜆1
𝜆𝜆2
𝜔𝜔
𝜑𝜑

) =

(

 
 
 

𝐴𝐴𝐴𝐴
𝐽𝐽𝑟𝑟
0

𝐴𝐴𝑘𝑘𝑚𝑚
2𝐽𝐽𝑟𝑟2

𝑡𝑡2 − 𝐴𝐴𝐴𝐴
𝐽𝐽𝑟𝑟

𝐴𝐴𝑘𝑘𝑚𝑚
6𝐽𝐽𝑟𝑟2

𝑡𝑡3 − 𝐴𝐴𝑡𝑡2

2𝐽𝐽𝑟𝑟)

 
 
 

 (25) 

Is the particular solution of nonhomogeneous system (16). 

3 Reached results 
 

So finally, we must find the unknown coefficients 𝐶𝐶1, 𝐶𝐶2, 𝐶𝐶3, 𝐶𝐶4 ∈ ℝ using the boundary 
conditions. 

𝜔𝜔(0) = 0,
𝜔𝜔(𝑇𝑇𝑚𝑚) = 0,
𝜑𝜑(0) = 0,

𝜑𝜑(𝑇𝑇𝑚𝑚) = 2𝜋𝜋,    

 (26) 

 

for system 

 

𝜆𝜆1 = −𝐶𝐶3
1
𝐽𝐽𝑟𝑟
− 𝐶𝐶4

𝑡𝑡
𝐽𝐽𝑟𝑟
+ 𝐴𝐴𝐴𝐴
𝐽𝐽𝑟𝑟
      ⇔      𝑀𝑀𝑒𝑒 = 𝑘𝑘𝑚𝑚𝜆𝜆1 = −𝐶𝐶3

𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟
− 𝐶𝐶4

𝑘𝑘𝑚𝑚𝑡𝑡
𝐽𝐽𝑟𝑟
+ 𝑘𝑘𝑚𝑚𝐴𝐴𝐴𝐴

𝐽𝐽𝑟𝑟
𝜆𝜆2 = 0,

𝜔𝜔 = −𝐶𝐶2
𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟2
−𝐶𝐶3𝑡𝑡

𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟2
−𝐶𝐶4𝑡𝑡2

𝑘𝑘𝑚𝑚
2𝐽𝐽𝑟𝑟2

+ 𝑡𝑡2 𝐴𝐴𝑘𝑘𝑚𝑚
2𝐽𝐽𝑟𝑟2

− 𝐴𝐴𝐴𝐴
𝐽𝐽𝑟𝑟
,

𝜑𝜑 = −𝐶𝐶1
𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟2
−𝐶𝐶2𝑡𝑡

𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟2
−𝐶𝐶3𝑡𝑡2

𝑘𝑘𝑚𝑚
2𝐽𝐽𝑟𝑟2

−𝐶𝐶4𝑡𝑡3
𝑘𝑘𝑚𝑚
6𝐽𝐽𝑟𝑟2

+ 𝑡𝑡3 𝐴𝐴𝑘𝑘𝑚𝑚
6𝐽𝐽𝑟𝑟2

− 𝐴𝐴𝑡𝑡2

2𝐽𝐽𝑟𝑟2
,    

 (27) 

where 𝐽𝐽𝑟𝑟 = 0.3 kg m2, 𝑘𝑘𝑚𝑚 =
𝑘𝑘𝑡𝑡2

2𝑅𝑅𝑐𝑐
 and 𝑘𝑘𝑡𝑡 = 2.7 N m A−1, 𝑅𝑅𝑐𝑐 = 0.11 Ω𝐴𝐴 = 0.2 N m. The solution is 

𝐶𝐶1 = 0, 𝐶𝐶2 = 0, 𝐶𝐶3 = −0.1042, 𝐶𝐶4 = 0.4048. 
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𝒀𝒀 = (

𝜆𝜆1
𝜆𝜆2
𝜔𝜔
𝜑𝜑

) = 𝐶𝐶1

(

 
 
0
0
0
−𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟2 )

 
 
+ 𝐶𝐶2

(

  
 
𝑡𝑡

(

 
 
0
0
0
−𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟2 )

 
 
+

(

 

0
0
−𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟2

0 )

 

)

  
 

+𝐶𝐶3

(

  
 𝑡𝑡2
2

(

 
 
0
0
0
−𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟2 )

 
 
+ 𝑡𝑡

(

 

0
0
−𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟2

0 )

 +

(

 
 
−1
𝐽𝐽𝑟𝑟
0
0
0)

 
 

)

  
 

    +𝐶𝐶4

(

  
 𝑡𝑡3
6

(

 
 
0
0
0
−𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟2 )

 
 
+ 𝑡𝑡2

2

(

 

0
0
−𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟2

0 )

 + 𝑡𝑡

(

 
 
−1
𝐽𝐽𝑟𝑟
0
0
0)

 
 
+ (

0
1
0
0

)

)

  
 
,

 (24) 

where 𝐶𝐶1, 𝐶𝐶2, 𝐶𝐶3, 𝐶𝐶4 ∈ ℝ are real constants. 

And also is it easy to proof that the function 

𝒀𝒀𝑝𝑝 = (

𝜆𝜆1
𝜆𝜆2
𝜔𝜔
𝜑𝜑

) =

(

 
 
 

𝐴𝐴𝐴𝐴
𝐽𝐽𝑟𝑟
0

𝐴𝐴𝑘𝑘𝑚𝑚
2𝐽𝐽𝑟𝑟2

𝑡𝑡2 − 𝐴𝐴𝐴𝐴
𝐽𝐽𝑟𝑟

𝐴𝐴𝑘𝑘𝑚𝑚
6𝐽𝐽𝑟𝑟2

𝑡𝑡3 − 𝐴𝐴𝑡𝑡2

2𝐽𝐽𝑟𝑟)

 
 
 

 (25) 

Is the particular solution of nonhomogeneous system (16). 

3 Reached results 
 

So finally, we must find the unknown coefficients 𝐶𝐶1, 𝐶𝐶2, 𝐶𝐶3, 𝐶𝐶4 ∈ ℝ using the boundary 
conditions. 

𝜔𝜔(0) = 0,
𝜔𝜔(𝑇𝑇𝑚𝑚) = 0,
𝜑𝜑(0) = 0,

𝜑𝜑(𝑇𝑇𝑚𝑚) = 2𝜋𝜋,    

 (26) 

 

for system 

 

𝜆𝜆1 = −𝐶𝐶3
1
𝐽𝐽𝑟𝑟
− 𝐶𝐶4

𝑡𝑡
𝐽𝐽𝑟𝑟
+ 𝐴𝐴𝐴𝐴
𝐽𝐽𝑟𝑟
      ⇔      𝑀𝑀𝑒𝑒 = 𝑘𝑘𝑚𝑚𝜆𝜆1 = −𝐶𝐶3

𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟
− 𝐶𝐶4

𝑘𝑘𝑚𝑚𝑡𝑡
𝐽𝐽𝑟𝑟
+ 𝑘𝑘𝑚𝑚𝐴𝐴𝐴𝐴

𝐽𝐽𝑟𝑟
𝜆𝜆2 = 0,

𝜔𝜔 = −𝐶𝐶2
𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟2
−𝐶𝐶3𝑡𝑡

𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟2
−𝐶𝐶4𝑡𝑡2

𝑘𝑘𝑚𝑚
2𝐽𝐽𝑟𝑟2

+ 𝑡𝑡2 𝐴𝐴𝑘𝑘𝑚𝑚
2𝐽𝐽𝑟𝑟2

− 𝐴𝐴𝐴𝐴
𝐽𝐽𝑟𝑟
,

𝜑𝜑 = −𝐶𝐶1
𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟2
−𝐶𝐶2𝑡𝑡

𝑘𝑘𝑚𝑚
𝐽𝐽𝑟𝑟2
−𝐶𝐶3𝑡𝑡2

𝑘𝑘𝑚𝑚
2𝐽𝐽𝑟𝑟2

−𝐶𝐶4𝑡𝑡3
𝑘𝑘𝑚𝑚
6𝐽𝐽𝑟𝑟2

+ 𝑡𝑡3 𝐴𝐴𝑘𝑘𝑚𝑚
6𝐽𝐽𝑟𝑟2

− 𝐴𝐴𝑡𝑡2

2𝐽𝐽𝑟𝑟2
,    

 (27) 

where 𝐽𝐽𝑟𝑟 = 0.3 kg m2, 𝑘𝑘𝑚𝑚 =
𝑘𝑘𝑡𝑡2

2𝑅𝑅𝑐𝑐
 and 𝑘𝑘𝑡𝑡 = 2.7 N m A−1, 𝑅𝑅𝑐𝑐 = 0.11 Ω𝐴𝐴 = 0.2 N m. The solution is 

𝐶𝐶1 = 0, 𝐶𝐶2 = 0, 𝐶𝐶3 = −0.1042, 𝐶𝐶4 = 0.4048. 

 
Fig. 1. Position and angular speed of the system. (The x-axis represents the time in seconds and the y-

axis represents the position in radians, respectively angular velocityin radians per second). 

 
Fig. 2. 𝑀𝑀𝑒𝑒 electrical torque (The x-axis represents the time in seconds). 
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