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Abstract. To study the flattening of the sphere, it is proposed to use the 
kinetic indentation diagram by the plane. Given the known values of the 
reduced elastic modulus, applied force, maximum and residual 
deformation, it is possible to determine the contact area. It is indicated that 
in this regard, the exponent of the unloading curve of a pre-loaded sphere 
with a flat rigid surface plays an important role. The analysis of methods 
for determining the unloading curves of unloading for the finite element 
models, taking into account strain hardening, is carried out. It is shown that 
dependences of the unloading curves during flattening on the relative 
indentation in the form and the range of values differ from the similar ones 
during indentations of the sphere. The dependence between the exponents 
of the unloading curves for the force and for the area is determined. The 
range of correct use of the results of the finite element analysis of a 
hemisphere for rough surfaces is indicated. The exponent of the unloading 
curve after flattening the spherical segment from the half-space property is 
determined. 

1 Introduction  
Determination of contact characteristics at the joint of rough surfaces is a difficult problem, 
both from the point of view of describing rough surfaces, and from the point of view of the 
mechanics of contact of individual asperities. Therefore, when solving such problems, 
various methods of mathematical modeling are usually used, which leads to various models 
of rough surfaces: statistical, discrete, fractal, fractal-discrete, etc. [1-7]. All of these 
models assume a contact between an equivalent rough and smooth surface. As follows from 
[4], a rough surface can be represented as a set of bodies of regular geometric shape (rods, 
cones, pyramids, spheres, ellipsoids), for which the solution of contact problems is known. 
Moreover, their height distribution in the rough layer should corresponds to the surface 
bearing curve. A spherical model of a single asperity is considered optimal. 

When a sphere comes into contact with a flat surface, depending on the ratio of 
mechanical properties, it is possible an indentation or flattening of a sphere. In most cases, 
the contact is elastoplastic. The results of studies of elastoplastic contacts of a sphere and a 
plane are given in [8, 9], which indicate the absence of a closed solution. An exception is 
the engineering methods for sphere indentation presented in [10, 11] based on the concept 
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of "plastic hardness" and the linear dependence of the residual deformation on the applied 
load during the sphere indentation and having experimental confirmation. 

The complexity of the problem led to the creation of the finite element models (FEM) of 
the contact of a sphere and a plane. To simplify the finite element solutions of 
elastoplasticity problems, mathematical models are used to describe the true stress-strain 
curves. The most commonly used elastoplastic Hollomon body [12-15, etc.], for which 
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where ES yy =ε ; yyS σ≈ , yS  and yσ  are the true and conditional yield strength; ε  is 

the deformation; E is the elastic modulus, n is the hardening exponent. 
In [16], an engineering method is given for calculating the contact characteristics during 

flattening of a sphere by modernizing the Drozd-Matlin model [10, 17]. In this case, the 
results of modeling were used to determine the residual deformation during flattening of the 
sphere. To determine the contact area, the kinetic indentation method proposed by 
S.I. Bulychev [18] to determine the elastic modulus of the material. In Fig. 1, it is shown a 
typical diagram of kinetic indentation, which is usually represented in coordinates hP − , 

or hP − , where P is the load, Rhh =  is the relative indentation of the indenter. 

 

Fig. 1. The kinetic indentation diagram. 

The loading curve can be described by the equations 
ααα−αα− === hChhPhhPP lmmmm ,   (2) 
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where α−= mml hPC , Rhh mm = , R is the sphere radius; 5.1...1=α , 5.1...2.1=m is the 

exponents. 
The method is based on the equation for the contact stiffness of the initial section of the 

unloading curve [18] 
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where A is the projection of the contact area, 
∗E  is the reduced modulus of elasticity. 

Taking into account expression (3), we have 
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Given the known values of the reduced modulus of elasticity, applied force, maximum 
and permanent deformation, it is possible to determine the contact area. In this regard, an 
important role is played by the exponent of the unloading curve of a pre-loaded sphere by a 
flat rigid surface, the refinement of the values of which is the purpose of this work. 

2 Analysis of methods for determining the exponent of the 
unloading curve  

As follows from Fig. 1, with kinetic indentation, the exponent of the unloading curve is 
determined by the ratio 

w
wm 0= ,      (6) 

where SPw m= . 
According to [19], as per concept of “effective indenter shape”, the value of the 

exponent of the unloading curve is expected in the range 1.2 ... 1.5, which is confirmed by 
the experimental values are given. In [11], the parameter m was determined by calculation 
using the results of the finite element analysis: 
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where ( )hnchhc yc ,,
22 ε== , determined according to [12]; ch is the contact depth. 

Fig. 2 and Fig. 3 show the dependence of the exponent of the unloading curve on the 
relative indentation of the rigid sphere for different values of yε and n. As follows from 

Fig. 2a with an increase in the elastic properties of the material (values of n and yε ), the 

value of the exponent of the curve increases. For the relative indentation 2.0...0=h  
characteristic of the tribomechanics of rough surfaces, the values of the exponent of the 
unloading curve are in the range of 1.426 ... 1.5. 

a)    b)  

Fig. 2. Dependencies hm −  at fixed values yε  (a) and at fixed values of n (b). 

Fig. 2b shows the dependences of the exponent of the unloading curve on the relative 
indentation of the rigid sphere at fixed values of n for different values yε . In this case, the 

range of scatter of m values is much narrower than in the previous case. 
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Fig. 3. Dependencies hm −  for materials with increasing elastic properties. 

For the FEM of sphere flattening, taking into account strain hardening [14, 15], the 
unloading curve is described by an equation similar to equation (3) for the unloading curve 
when the sphere is indented: 
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where Rww mm = , resw  is the residual displacement when unloading the sphere (analogue 

fh ) defined by the equation: 

( ) 2
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−∗ d
m
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;     (9) 

unloading curve exponent: 

( ) pe
mpm ∗ω⋅= 5.1 ;     (10) 

where for FEM [14]: 
( ) 02955.00411.007071.0 2 −−== nnnee pp ,  (11) 

39877.017406.022471.0)( 2 +−−== nnndd ;  (12) 

for FEM [15]: 
( ) 00596.00718.00401.00705.00519.0, 2 −ν−−ν+=ν= nnnnee pp , (13) 

331.0219.0237.0114.0),( 2 +ν+−−=ν= nnndd ;   (14) 

here n is the hardening exponent, ν  is the Poisson's ratio, cmm www =∗ , cw  is the critical 

displacement at which plastic deformation begins. 
Fig. 4 shows the dependence of the exponent of the unloading curve on the relative 

displacement after flattening the sphere with a rigid surface. 
For relative flattening 2.0...0=w , the values of the exponent of the unloading curve 

pm  are in the range 1.045 ... 1.5, which significantly differ from the analogous range when 

the sphere is introduced. A sharp drop in values pm  occurs in the range 005.00 ≤≤ w . 
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a)    b)  

Fig. 4. Dependencies wmp −  at fixed values yε  (a) and at fixed values of n (b) for FEM [14]. 

When spherical asperities are flattened, the dependencies wmp −  are concave, while 

when spherical asperities are indented, they are convex. In addition, Fig. 4a shows that the 
incorrect results are obtained for more plastic materials - the values pm are larger than for 

more elastic ones. 
Similar results for FEM [15] are shown in Fig. 5, at which the values of the exponent of 

the unloading curve are in the range 1.11 ... 1.5. 

a)    b)  

Fig. 5. Dependencies wmp −  at fixed values yε  (a) and at fixed values of n (b) for FEM [15]. 

Similar results on the determination of the contact areas upon indentation and flattening 
of spherical asperities obtained in [20] suggest similar values of the exponentials of the 
unloading curves during indentation and flattening, which is based on the analysis of 
equation (3). 

The above analysis presupposes additional studies of FEM [14, 15]. 

3 Research methodology 
Investigations were carried out in the following directions: the “updated” parameters of the 
flattening FEM were compared with the calculated ones - the forces in contact and the 
exponent of the unloading curves; the relationship between the exponents of unloading for 
force and area was determined; the exponent of the unloading curve was determined when a 
spherical segment flattens from the property of a half-space. 

Let us give expressions for the force and area of the FEM contact [14]: 
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where ( )nBB ii = , ( )nii γ=γ , ( )nCC ii = , ( )nii λ=λ  are the parameters that depend on the 

hardening exponent n for different ranges ∗w ; cw , cP  and cA are the critical values of the 

parameters corresponding to the onset of plastic deformation are determined from the 
relations of the Hertz theory [6]: 
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where ( ) 1450.0756.0 −ν⋅−=yK ; ∗σ=ε Eyy , ∗E  is the reduced modulus of elasticity; 
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From equation (5) taking into account equations (9) - (12) and (16), it follows that 

[ ]dde
ca wwwCPP p 25.015.0

2 )()(2)( 2 −∗−∗−λ+∗ −= ,   (20) 
Neglecting the term of a lower order of smallness in parentheses from (20), we have 

pe
ca wCPP −λ+∗= 25.015.0

2 )( .     (21) 

Fig. 6 shows the dependences wP − , calculated by equations (21) and (15), from 
which good agreement follows. 

 

Fig. 6. Relative force versus relative displacement. Points correspond to equation (19), lines - to 
equation (15). 

Thus, from equations (15) and (21), it follows that 
5.0

22 2 CB ⋅≈ , dep −−λ+≈γ 22 5.01 .    (22) 

On the other hand, equation (5) makes it possible to determine the exponent of the 
unloading curve 
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B
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Fig. 7 shows the results of calculating the exponents of the unloading curve using 
equation (23) obtained from equation (20). Despite the good agreement of efforts in Fig. 6, 
the spread of exponent values calculated by different methods increases with increasing 
relative displacement. In addition, there is an incorrect result - the exponent value of a more 
elastic material is less than for a less elastic one. 
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Fig. 7. Dependencies wmp − . Dots - equation (23), line - equation (10). 

Let us carry out similar research of the exponent of the unloading curve for the FEM 
[15], in which the equations are used for the force and contact area: 
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Equations (24) - (27) given in [15] are defined for 10 ≤≤ n  and 1201 ≤ω< ∗ . In the 

subsequent work of the authors [21] it is indicated that ∗ω<1 . 
From equation (5), taking into account (9), (24) and (25), for the exponent of the 

unloading curve, we obtain 
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The exponential values of the unloading curves calculated by equation (28) do not agree 
with the values obtained by equation (10). The reason for this can only be the errors of the 
model described by equations (24) - (27). 

Let us consider the relationship between the exponents of the unloading curves for force 
and area. Similarly to equation (8), we have 
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When reloading the unloaded sphere, the displacement value [6] is 

∗
β

π
=−=

aE
PK

www rese
0

0 ,     (30) 

where ( ) 5.0π= Aa  is the contact area radius; when flattening the sphere 20 =βK . 
From equation (30), taking into account (29), we obtain 

( ) am
resewe wwKP 5.01+−=  ,    (31) 

7

MATEC Web of Conferences 329, 03066 (2020)	 https://doi.org/10.1051/matecconf/202032903066
ICMTMTE 2020



where ( )

5.0

0
�
�
�

�
�
�
�

�

−π
π

=
β

∗

am
rese

m
w ww

A
K
EK . 

Differentiate equation (31) is 
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Fig. 8 shows a comparison of dependencies calculated by equations (10) and (33). 

 

Fig. 8. Dependences of the exponents of the unloading curve on the relative displacement. Dots - 
equation (10), line - equation (33). 

The use of a hemisphere in the finite element modeling of flattening the asperities of a 
rough surface is not a good option, since there are no such asperities whose height is equal 
to the radius. The average angle of inclination for rough surface asperities is several 
degrees. In work [22], it is indicated that if we represent an individual asperity in the form 
of a spherical segment with a base diameter of 2a, which is located on a cylindrical base, 
then the base will act as a semi-infinite rigid body when its height exceeds 6a. 

Therefore, we believe that the correct use of the results of the finite element analysis 
during flattening is possible for 17.0<Ra . 

Let's introduce the parameter aC  (analogue hhc c=2  when indentation the sphere, 

equation (7)): 
( )

)(wA
wAC a
′

= ,        (34) 

where ( )wA  is the contact area is determined by the equation (16); ( )wA′  is the cross-

sectional area of the sphere at the level w; 

( ) ( )22 wRwwA −π=′  .     (35) 
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By analogy with equation (7), we obtain 

a

a

p C
Cm

−
−

=
2

23
,      (37) 

This approach is possible when the spherical segment is in a half-space with the same 
material.  
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Fig. 9. Dependences of the exponents of the unloading curve on the relative displacement when 
flattening a spherical segment with the properties of a half-space. 

Fig. 9 shows the dependences wmp −  calculated by equation (37), which are convex. 

The unloading curve exponential range is close to that for sphere indentation. 

4 Conclusion 
1. To study the flattening of a sphere, it is proposed to use a diagram of kinetic 

indentation by a plane. With known values of the reduced elastic modulus, applied force, 
maximum and residual deformation, it is possible to determine the contact area. In this 
regard, the exponent of the unloading curve of a pre-loaded sphere with a flat rigid surface 
plays an important role. 

2. The analysis of methods for determining the exponents of unloading curves for the 
finite element models that take into account strain hardening is carried out. It is shown that 
the dependences of the exponents of the unloading curves during flattening on the relative 
indentation in the shape and range of values significantly differ from those for the 
indentation of the sphere. 

In this case, incorrect results were obtained - for more plastic materials, the values pm  

are larger than for more elastic ones. This should be attributed to the disadvantages of the 
model. 

3. The research was carried out in the following directions: the "updated" parameters of 
the FEM of flattening of the sphere were compared with the calculated ones - the forces in 
contact and the exponential curves of unloading; the relationship between the exponents of 
unloading for force and area was determined; the exponent of the unloading curve was 
determined for flattening a spherical segment with the properties of a half-space. 

4. Good agreement was obtained for the dependences wP −  calculated by equations 
(20) and (15), which indicates a qualitative relationship between the parameters of the FEM 
[14]. In this case, the spread in the values of the exponentials of the unloading curves 
calculated by different methods with an increase in the relative displacement can be 
considered satisfactory. 

Similar values of the exponents of the unloading curves for the FEM [15], calculated by 
expression (28), do not agree with the values obtained by equation (10), which can only be 
explained by model errors. 

5. The relationship between the exponents of the unloading curves for the force and for 
the area has been established, which also confirms the qualitative relationship of the FEM 
parameters [14]. 

6. Correct use of the results of the finite element analysis of a hemisphere for rough 
surfaces is possible for 17.0<Ra . 
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To determine the exponent of the unloading curve when flattening a spherical segment 

from the half-space property, a parameter aC  is introduced. In this case, the range of 
values of the exponents of the unloading curve and the shape of the dependencies are close 
to those for the indentation of the sphere. 
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