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Abstract. The operation optimization for the cold end system is an efficient means to improve the 
economy of steam turbine units. To compensate for the inadequacy of the traditional mechanism analysis 
utilized in obtaining actual operating characteristics of the cold end system, the prediction model of the 
exhaust pressure was established on the basis of mechanism analysis combined with data from the operation 
process. An online adaptive updating strategy was introduced to guarantee the modeling accuracy. A 
discrete model of the cooling tower outlet water temperature (CTOWT) was constructed based on the 
operation data partitioned into different groups according to the pump operating mode change (POMC). 
Combining the above two models, the coupled model of the cold end system was therefore obtained. A 
model-based operation optimization system was then implemented for the cold end system in a coal-fired 
power plant. Experimental trials authenticate that the optimization suggestions provided by the system can 
effectively enhance the benefit of power generation. 

1. Introduction 
In recent decades, with large-scale renewable energy 
connected to the power grid, coal-fired power plants 
more frequently run in cycling load operation mode to 
compensate for the intermittency of renewable energy [1]. 
As a significant auxiliary system of steam turbine, the 
cold end system has direct impact on the economic 
operating of the units when the load varies in a wide 
range. Note that for every 1kPa decrease in the back 
pressure, the steam turbine output will increase 
(1%-2%)[2], whereas the reduction of the back pressure 
is at the expense of extra power consumption of the 
circulating pumps. It is estimated that the circulating 
water pumps consume about (1%-1.5%) of the total 
power of the plant[3]. 

There has been quite a bit of attention attracted on the 
cold end system modeling methods and operation 
optimization strategies[4–6]. Li et al.[7] applied the least 
square support vector machine algorithm (LSSVM) to 
modify the deviation of operation data and the results 
obtained from mechanism equations. However, it is 
worth noting that the exhaust pressure is essentially 
different from the condenser pressure. Research shows 
that the uneven flow field distribution in the complicated 
exhaust passage seriously affects the thermal 
performance of the condenser[8]. In terms of cooling 
tower modeling, CFD (computational fluid dynamics) 
models were employed to investigate cooling tower 
characteristics[9–11], which were generally 

computational expensive. Recently, data-driven 
approaches have been gaining increasingly popularity in 
modeling the cooling tower. Considering the operation 
data within the same operating mode have the similar 
characteristics, Pan et al.[12] developed a set of local 
linear models on the basis of data portioned into several 
groups by the fuzzy c-mean clustering algorithm. 
Similarly, Wang et al.[13] proposed a dimensionless 
index to describe the cooling capability of a cooling 
tower. 

In this paper, the implementation of operation 
optimization is founded on the conception of evaluating 
the impact of a specific pump combination change on the 
cold end system. In view of this, a discrete model of 
CTOWT is therefore constructed with the data 
partitioned by different pump operating mode changing 
way. An adaptive update strategy is introduced to 
correspond with the actual process. Thereafter, the 
prediction model of exhaust pressure is further 
established on the basis of mechanism model of with 
least squares support vector machine (LSSVM) 
algorithm. Embedded with the coupled model, a cold end 
optimization system is developed to provide guidance for 
the actual operation. 

2. Overview of the system background 
Structure schematic diagram of the studied cold end 
system shared by two turbo-generator units is depicted in 
figure1. On the premise of safety, the circulating water 
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system generally operates in the following five modes: 
two units with two pumps (P2), three pumps (P3), four 
pumps (P4), five pumps (P5) and six pumps (P6). The 
research aims to investigate which pump operating mode 
under a certain condition can simultaneously fulfil the 
requirements of safety and economy. 

3. Modeling of the cold end system 

3.1. Modeling of steam exhaust pressure 

3.1.1. Thermodynamic characteristic model of the 
condenser.  

An adaptive heat transfer coefficient updating strategy is 
considered to enhance the accuracy of the model. The 
thermodynamic characteristic model of the condenser is 

shown in figure 2. 
The energy balance equation of the process is expressed 
as follows: 

2 1( )c m w p w wkA t D C t t∆ = −                     (1) 
Equation (2) calculates the logarithmic mean 

temperature difference: 
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Combining equations (1) and (2), the OHTC can be 

obtained as follows:
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Fig. 1. Diagram of the cold end system in a coal-fired power station. 
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Fig. 2. Thermal characteristic model of condenser. 
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Fig. 3. Adaptive updating logic diagram of overall heat transfer 
coefficient. 
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The Antoine equation utilized to calculate the 
saturated vapour pressure is presented below: 
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Thus, the saturation temperature can be inversely 
derived from equation (4): 
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Note that the range applicable to the saturation 
temperature is 17℃ to 227℃ [15]. 
With equations (3) and (5), the overall heat transfer 
coefficient of the condenser is presented as follows: 

1

2

3826.36 227.68
9.3876 lnln 3826.36 227.68
9.3876 ln

w
w p c

c
w

c

tD C pk
A t

p

− −
−

=
− −

−

     (6) 

 
The update logic diagram is depicted in figure 3. 

Based on the latest N k values in the database, the 
overall heat transfer coefficient utilized to calculate the 
thermal characteristics of the condenser can be obtained 
as follows: 
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The terminal temperature difference is expressed as 
equation (8): 
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From equation (1) to equation (8), the condensation 
temperature of steam in the condenser can be attained: 

s w1 wt t t tδ= + ∆ +                            (9) 
The condenser pressure can be obtained from the 

following empirical formula: 
7.46

6s
c

100 9.806 10 (MPa)
57.66

tp −+ = × × 
 

        (10) 

The temperature of circulating water at the outlet of 

the condenser is as follows: 
w2 w1t t t= + ∆                                (11) 

From equation (1) to equation (11), the calculation 
model of condenser outlet water temperature and 
pressure is established: 

( )w2 c w1 w, ,tt f D t D=                          (12) 

( )c c w1 w, ,
cpp f D t D=                        (13) 

 

 

 

 
Table 1. Error statistics of the CTOWT model.  

 

 

 

 

3.1.2. Deviation modification based on LSSVM. 

Numerous investigations revealed that the aerodynamic 
performance of exhaust passage is influenced by multi 
factors like inlet swirl distribution[14], steam 
wetness[15], non-uniformity flow field distribution[16]. 
The major operating parameters such as load, condenser 
inlet water temperature, exhaust flow and condenser 
pressure. were reasonably selected as the input of the 
data-driven model, and LSSVM algorithm was then 
applied to establish the deviation modification model.  

3.2. Modeling of the cooling tower 

An analysis program was developed in-house to capture 
start-stop action happening time of circulating water 
pumps by scanning historical data. Once the action 
captured, working conditions of a certain POMC are 
recorded subsequently and hence the POMC dataset are 
generated, namely, 1 2, nD D D⋅ ⋅ ⋅ . Each subset iD  
consists of data that categorized by one specific pump 
operating mode changing way.  
Imbedded with statistical analysis conducted on POMC 
dataset in the previous section, LSSVM algorithm was 
utilized to fit the relationship between the variation of 
CTOWT with the load, and the ambient parameters under 
different POMC, namely: 

( )2 ct , , ,, ,t f N t u p A B∆ =                  (14) 

Thus, the CTOWT can be calculated as follows: 
2,2 2,1 2+t t t= ∆                            (15) 

3.3. Coupling model of the cold end system  

w2 1 w1 2,t t t t= =                         (16) 
According to equation (16), the models of exhaust 
pressure and the cooling tower are coupled together to 
predict the exhaust pressure when the pump operation 
mode switches between different operation modes under 
given load and environmental factors, that is: 

( )c 2, , , , , , , ,t wu Dp f N D t p t A B=           (17) 
The calculation flow chart of the exhaust steam 

pressure is presented in figure 4. 

3.4. Model validation  

The 2×1050MWe coal-fired power plant is in Taizhou, 
China. Figure 5, figure 6 and table 2 present the accuracy 
of the cooling tower models. Figure 7 and table 2 present 
the accuracy of the coupled model. The average relative 
error is about 1.7%, indicating high consistency between 
the model and the actual process. Hence, the model of 
exhaust pressure can be reasonably further applied to the 
operation optimization. 

Error #1 cooling tower #2 cooling tower 
Absolute 
error /℃ 

Relative  
error /% 

Absolute error /℃ Relative error /% 

Max 1.280  5.006  1.311  5.977  

Min 0.003  0.000  0.000  0.000  

Mean 0.325  1.884  0.338  1.513  

Standard deviation 0.237  0.014  0.244  0.013 
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Fig. 4. Calculation flow chart of cold end system model 

Table 2. Error statistics of steam turbine exhaust pressure 
model. 

Error Steam turbine exhaust pressure 
Absolute error /kPa Relative error /% 

Max 0.358  4.986  
Min 0.000  0.002  

Mean 0.141  1.727 
Standard deviation 0.079  0.998 
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Fig. 5. Comparison between measured and predicted #1 
CTOWT 
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Fig. 6. Comparison between the measured and predicted #2 
CTOWT 
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Fig. 7. Comparison between the actual and predicted exhaust 
pressure 
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Fig. 8. Flow chart of the operation optimization for the cold 
end system
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Table 3. Economic indexes of the whole plant after a specific POMC 

 

4. Optimization strategy and 
implementation 

Figure 8 presents the optimization process. Take a pump 
operating mode change at 13:30 on August 3, 2018 as an 
example. Before the switch, the loads of unit #1 and unit 
#2 were 800MW and 815MW, respectively. The pump 
operating mode was set at P6, and the ambient 
temperature was 34℃, the humidity 63%. At the moment, 
the cold end optimization system suggested the operating 
mode of P5 based on the embedded model. Following 
the recommendation, the on-duty operator stopped a 
pump and the parameters of the cold end reached a stable 
state after about 35 minutes. Table 3 summarizes the 
economic indexes of the whole plant after a possible 
pump operation mode change under such circumstance. 
Compared with five running pumps, the increased output 
power of the turbines is little to offset the more energy 
consumption under the operating mode of six pumps. 

5. Conclusion 
(1) The exhaust pressure was no longer considered 
equivalent to the condenser pressure but the result further 
modified with LSSVM algorithm on the basis of 
condenser pressure. Forgetting factors were introduced in 
modeling the condenser pressure as an adaptive update 
strategy of the overall heat transfer coefficient. The mean 
relative error is within 2% for the exhaust pressure 
model.  
(2) A discrete model of the cooling tower outlet water 
temperature was established based on the data partitioned 
into different groups according to the pump operating 
mode changing way. The prediction accuracy and 
calculating speed revealed that the proposed modeling 
approach could fulfill the requirements of field 
application. 
(3) A cold end optimization system was developed based 
on the adaptive model. The reliability and capability of 
the implemented system were demonstrated in 
experimental trials. The whole work offers a practical 
opportunity for the operators to conserve energy in the 
operation of the cold end system. 
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Nomenclature 

k  overall heat transfer coefficient, kJ/(m2·h·K) p∆ t  deviation between the exhaust pressure and 
the condenser pressure 

cA  outside surface of tube bundles, m2 nN∆  net power of the units, kW 

mt∆  logarithmic mean temperature difference, K tN∆  turbine additional power after pump operating 
mode change, kW 

cD  condensate mass flow rate, t/h pN∆  increased energy consumption of pumps after 
pump operating mode change, kW 

wD  circulating water flow rate, t/h   

pC  specific heat capacity of water, kJ/ (kg·K)   

1wt  inlet water temperature of condenser, K Subscripts 

2wt  outlet water temperature of condenser, K A  pump operating mode before change 

st  condensation temperature of exhaust steam, K B  pump operating mode after change 

cp  condenser pressure, MPa w  circulating water 

K  updated overall heat transfer coefficient, 
kJ/(m2·h·K) c  condenser 

tδ  terminal temperature difference of condenser, K s  saturation state 

wt∆  temperature rise of circulating water in condenser, 
K m  mean 

1t  inlet water temperature of cooling tower, K t  turbine 

2t  outlet water temperature of cooling tower, K p  pump 
N  load, MW Abbreviations 
t  dry bulb temperature, K CTOWT cooling tower outlet water temperature 
u  relative humidity, % POMC pump operating mode change 
p  atmospheric pressure, kPa LSSVM the least square support vector machine 

algorithm 

2t∆  outlet water temperature variation of cooling tower 
after pump operating mode change, K CTIWT cooling tower inlet water temperature 

A  pump operating mode before change OHTC overall heat transfer coefficient 
B  pump operating mode after change EP exhaust pressure 

2 1,t  outlet water temperature of cooling tower before 
pump operating mode change, K CP condenser pressure 

2 2,t  outlet water temperature of cooling tower after 
pump operating mode change, K Greek symbols 

D  dataset µ  forgetting factor 
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