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Abstract: Changes in product specifications and their combinations can be achieved through adaptations of physical 
components. To better satisfy the changeable product specifications, design decisions on physical components need to be 
made by considering the dependencies among product specifications. In this paper, a method for dependencies quantification 
among product specifications is defined from the statistical point of view. Since product specifications are achieved by 
physical components, then the statistical dependencies among product physical components are analyzed based on 
specifications/components relationships. A method for design decision support based on components clustering is proposed 
for new product development. An example is provided to illustrate the proposed methodology. 

1 Introduction 

Engineering practices in the past decades demonstrate 
that the global competitiveness of manufacturers is 
highly related to the rapid response to changeable 
customers’ requirements of product specifications. 
Changes in product specifications and their combinations 
are achieved through adaptations of physical components. 
Various types of products including customized product, 
reconfigurable product, upgradeable product, adaptable 
product, and open architecture product, have been 
designed with adaptabilities to satisfy the changeable 
requirements. A comparison of those types of products 
are provided in Ref. [1].  

To better facilitate the development of different types 
of products for the satisfaction of changeable 
requirements, dependencies among product 
specifications need to be analysed for design decision of 
physical components by considering the 
specification/component relationships [2]. In Axiomatic 
Design, product design matrix is obtained by mapping 
structure domain to function domain, which indirectly 
describes the dependencies among functional 
requirements on product specifications. For a coupled 
design, decoupling method is needed to transform the 
design into uncoupled or quasi-coupled design to ensure 
the functional independence [3]. For a complex product 
or system, calculation of functional dependencies among 
product specifications can better facilitate the decoupling 
strategy planning. 

As regards the design dependency calculation, most 
of the existing works rely on expert analyses and 
evaluations [4-7]. The existing expert evaluation 
methods mainly include Individual Judgment, Expert 
Meeting, Brainstorming, and Delphi Method. To better 
support design decision, fuzzy clustering method has 
also been proposed [8-10]. Although the existing 
methods has been widely used in recent years, due to its 
strong applicability and good interpretability, those 
methods rely on expert experiences and the acquisition 
of dependency among product specifications is affected 

by subjective factors.  
In the era of internet and big data, product data 

including sales and specification combinations can be 
easily collected. Such data represent an emerging 
resource for the analysis of dependencies among product 
specifications.  

To overcome the limitations of the existing experts-
based method for dependency analysis, this research 
aims at proposing a statistic-based correlation calculation 
method [11] for supporting design decision of physical 
components. In this work, a method for measuring 
dependencies among product specifications is proposed 
from the perspective of mathematical statistics based on 
collected product data. Dependency among product 
components is obtained by considering 
specifications/components relationships. Hierarchical 
clustering of product components is carried out for 
product design decision support.  

2 Proposed method 

The proposed framework is based on the following 
assumptions: 
(1). Big data of product sales including product sales 

number, combinations of product specifications etc. 
can be obtained through market survey.  

(2). Dependencies among product specifications can be 
originated from both physical components and 
customer preferences.  

(3). Dependencies among product specifications 
originated from both physical components and 
customers preferences are embedded in big data of 
product sales.  

Based on the assumptions, a framework for design 
decision support through quantifying dependencies 
among product specifications is proposed and illustrated 
in Figure 1. In general, the proposed method includes 
four phases. In phase 1, product specifications and their 
values are obtained through market survey. In phase 2, 
the specifications dependencies for measuring 
dependency among product specifications are obtained 
using statistical method. In phase 3, relationships 
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between product components and specifications are 
obtained by understanding the product physical 
structures. In addition, dependency matrix of 
components is calculated for measuring the dependency 

among product components. In phase 4, components are 
clustered into different group by utilizing hierarchical 
clustering method. Design decision support is provided 
based on the component clustering results.

 

Fig. 1. Framework Flowchart.

2.1 Data collection and processing 

The relevant data of products are collected by carrying 
out a market survey. The collected raw data include 
product sales, specifications and their values with 
reference to each product instance. The collected data 
need to be pre-processed to remove missing data and 
redundant information from the datasets.  

Suppose m products with different specification 
values are obtained, the number of product sales can be 
arranged in array form: 

 N=[N1,…,Nm] (1) 

where Ni represents the sales of the i-th product, i =1, 
2, …, m. 

All specifications are screened, and the designers 
need to eliminate the specifications which have the 
identical attributes. (e.g., price and cost, only choose one 
of them.) Within the collected datasets, it is assumed n 
specifications are considered, then the specifications S 
are represented by: 

 S = [S1, …, Sn] (2) 

where Si (i=1, …, n) represents the i-th specification. 
Specification values of each specifications are 

counted out. Specification values can be classified into 
continuous, discrete and Boolean types. For continuous 
variables, a discretization procedure can be applied. For 
example, a price ranging from 0 to 100 can be divided 
into four intervals: [0,25], (25,50], (50,75], (75,100]. 
Values of specification Si are arranged as per Eq. (3): 

 

 Vsi=[Vi1,…,Viki] (3) 

where 𝑘𝑘  indicates the number of intervals. The 
probability 𝑃𝑃𝑆𝑆𝑖𝑖𝑖𝑖 of the i-th specification value Vip is 
characterized by Eq. (4): 

 ∑ Psip=1ki
p=1  (4) 

Product sales, product specifications along with 
values and probabilities are used in the next section for 
the calculation of dependencies among specifications. 

2.2 Specifications dependencies  

According to statistical method, dependencies among 
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variables can be calculated from the probabilities of 
observed sub-events of each variable.  

Since values of product specifications have been 
discretized in Section 2.1, in this research, each product 
specification is considered as a discrete random variable. 
Every variable corresponds to a large of sub-events 
namely specification values. A product observed in the 
market is considered as a product instance. According to 
Eq. (1), the numbers of all observed product samples, NS, 
can be calculated as: 

 NS= ∑ Ni
m
i=1  (5) 

Suppose Psipsjq   is the probability of Vip and Vjq 

appearing in the same product, the following 
relationships can be obtained: 

 Psipsjq= f
NS

 (6) 

where f represents the number of product samples in 
which Vip and Vjq appear in the same product sample, 
i,j∈[1,n]; p∈[1,ki],q∈[1,kj]. 

Suppose E(Si) and E(Sj) represent the expected value 
of Si and Sj, respectively， E(SiSj) represent the expected 
value of SiSj. The following relationships can be obtained: 

 E(SiSj)= ∑ ∑ (Vip×Vjq×Psipsjq)
kj
q=1

ki
p=1  (7) 

 E(Si)= ∑ (Psip×Vip)ki
p=1   (8) 

  E(Sj)= ∑ (Psjq×Vjq)
kj
q=1  (9) 

where Psip  is the probability of the value of the i-th 
specification equal to Vip, Psjq  is the probability of the 
value of the j-th specification equal to Vjq. 
The dependency between two product specifications Si 
and Sj, i.e., the correlation  ρsisj  can be calculated by: 

   ρsisj
=

COV(Si,Sj)

√Dsi√Dsj

  (10) 

where DSi and DSj  represent the variances of Si and 
Sj, respectively, Cov(Si, Sj) represents the covariance 
between Si and Sj. 

 DSi= ∑ [Vip-E(Si)]
2
×ki

p=1 Pip (11) 

 DSj= ∑ [Vjq-E(Sj)]
2
×

kj
q=1 Pjq (12) 

 Cov(Si,Sj)=E(SiSj)-E(Si)E(Sj) (13) 

Therefore, dependencies among specifications can be 
modelled by the matric Ms: 

  Ms=

[
 
 
 
 1 ρS1S2

… ρS1Sn

ρS1S2
1 … ρS2Sn

… … … …
ρS1Sn

ρS2Sn
… 1 ]

 
 
 
 
 (14) 

2.3 Components dependencies 

To better support design decision, the degree of influence 
of each specification on product components need to be 
considered.  

Based on the dependencies among specifications, the 
dependencies among components can be obtained 
according to specification/component relationships.  

In this work, suppose t is the number of components 
considered in design, and specifications Sp, …, Sq are 
influenced by component Cx, x=1, …, t, 
p≠q, p,  q∈[1,  n]  Specifications Su, …, Sv  are 
influenced by component Cy, y=1, …, t, u≠v, u, v∈[1,n] 
The dependency between components Cx  and  Cy can 
be calculated based on dependency among specifications 
Sp, …, Sq and Su, …, Sv. In this work, the dependencies 
between components Cx  and  Cy  are defined by the 
expected values of the dependency among specifications 
Sp, …, Sq and Su, …, Sv. Therefore, according to Eq. (10) 
the dependency between components Cx  and  Cy  can 
be calculated by:  

   ρCxCy
=

∑ ∑ ρSiSj
q
i=p

v
j=u

(q-p)×(v-u)
  (15) 

where x, y=1, …, t, p≠q, u≠v, p, q, u, v = 1, 2, …, n, n is 
the number of specifications considered in the design. 
The dependency between each component and itself is 
equal to 1. According to Eq. (15), the dependency among 
components can be modelled by the dependency matrix 
Mc, as follows: 

 Mc=

[
 
 
 
 1 ρC1C2

… ρC1Ct

ρC1C2
1 … ρC2Ct

… … … …
ρC1Ct

ρC2Ct
… 1 ]

 
 
 
 
 (16) 

2.4 Components clustering and decision 
support 

Results from the previous section leads to a matrix of 
product components Mc , to give out design decision 
support. Dependencies among product components 
should be find out to support the design.  

Hierarchical clustering is an unsupervised learning 
technic which is very useful if the data has no target 
attribute [12]. The data is explored to find some intrinsic 
structures inside them [13-14]. The combination of 
components can be obtained according to the 
dependency matrices through this method. Finally, 
designers can modify product design according to the 
clustering results. Hierarchical clustering algorithm 
decomposes a given data set hierarchically and organizes 
the data into a clustering tree, which can be divided into 
two schemes: cohesive and split. Aggregated hierarchical 
clustering is a bottom-up strategy. The split hierarchical 
clustering is contrary to the agglomerated hierarchical 
clustering [12,15]. 

The result of hierarchical clustering is a set of 
components, which provides an important basis for 
product design reorganization. The components can be 
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designed as the same module when the dependencies of 
them are high, which is more convenient for design 
improvement and maintenance. 

To give designers a convincing design decision 
support. The cluster results should be discussed to clarify 
the scope of application.  

Clustering results can be used as a basis for various 
design methods such as modular design, product family 
design, adaptable design, and open architecture product 
design. Since the clustering results are obtained by 
calculating the product feature dependency matrix and 
market survey provides the source data for the matrix. 
This design decision support could not only take into 
account the preferences of customers, but also avoid the 
influence of individual subjective consciousness on the 
results of product module division. 

In Axiomatic Design, functional requirements are 
required to be independently satisfied. The proposed 
method can potentially support Axiomatic Design by 

evaluating the dependencies among specification 
clusters. Specification clusters with less functional 
dependency are considered as “weak point” to be 
decoupled in design.  

3 Case study 

Battery pack is an essential to development of new 
electric vehicle. Many specifications of electric vehicle 
are influenced/determined by battery pack. A typical 
structure of battery pack is shown in Figure 2. To better 
satisfy changeable diversified customers’ requirements 
of specifications, battery packs in electric vehicles need 
to be well designed with better adaptability. In this work, 
design decision support of battery pack based on 
dependency among product specifications was carried 
out to illustrate the proposed method.  

 
Fig. 2. A typical structure of battery pack. 

3.1 Data collection of battery pack 

By market survey, 31 different types of battery packs for 

electric vehicles are obtained. Data including sales and 
specification values of battery packs are collected. What 
needs special mention is that, only sales number for 2018 
is recorded. Excerpt of the collected datasets can be seen 
in Table 1.

Table 1. Excerpt of the collected datasets. 

ID 
Sales in 

2018 

Specifications 

Price (×
1000 CNY) 

Electric 
Mileage 

(km) 

Maximum 
Power 
(kw) 

Maximum 
Speed 
(km/h) 

Energy 
Density 
(Wh/kg) 

Battery 
Warranty 

Time (years) 

Battery 
Capacity 

(kwh) 

Electricity 
Consumption 
(kwh/100km) 

Model of 
Cell 

1 65871 25 400 160 150 101.75 8 60.5 14.2 Cylindrical 
2 43902 22.5 400 160 130 160.8 8 60.48 14.57 Cylindrical 
3 35699 9.5 305 70 120 146.27 6 42 13.6 Cylindrical 
4 31274 19.5 318 80 125 122.68 8 48 16.4 Cylindrical 
5 27870 6 301 30 100 140.91 8 38 12 Cylindrical 
6 15336 5 255 30 100 150 8 27 10.6 Cylindrical 
7 10329 17 351 90 151 150.88 8 49 15 Cylindrical 
8 8852 22 360 132 156 126.57 8 51 1606 Cylindrical 
9 6508 33.5 400 90 140 125 4 82 20.5 Prismatic 

10 5096 17.5 301 85 102 140.5 8 39 16 Cylindrical 
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3.2 Dependencies among specifications  

Many specifications of battery packs are obtained by 
investigating and analysing the existing battery packs in 
the market. Considering that parts of the specifications 
have the same characteristics and the lack of data, nine 
of them have been sorted out for analysis and calculation. 
As shown in Table 2, there are the specification values 
corresponding to the nine specifications.  

Table 2. Product specifications and values. 

ID Specification Specification Values 

S1 
Price 

(×1000 CNY) 
[0,0.1]; (0.1,0.2]; (0.2,0.3]; 

(0.3,0.4]; (0.4, +∞) 

S2 
Electric 

Mileage (km) 

[0,250]; (250,300]; 
(300,350]; (350,400]; 

(400,+∞） 

S3 
Maximum 

Power (kw)  
[0,50] ; (50,100]; (100,150]; 

(150,200]; (200,+∞） 

S4 
Maximum 

Speed (km/h) 

[0,100]; (100,120]; 
(120,140]; (140,160]; 

(160,+∞） 

S5 
Energy Density 

(Wh/kg) 

[0,100]; (100,120]; 
(120,140]; (140,160]; 

(160,+∞） 

S6 
Fast Charging 

Time(h) 
[0, 0.5]; (0.5,1]; (1,1.5]; 

(1.5,+∞); NO 

S7 
Battery 

Capacity (kwh) 
[0,20]; (20,40]; (40,60]; 
(60,80]; (80,+∞） 

S8 

Electricity 
Consumption of 

100 KM 
(kwh/100km) 

[0,11]; (11,14]; (14,17]; 
(17,20]; (20,+∞） 

S9 Model of Cell Prismatic; Cylindrical; 

Based on the case study data, pairwise dependencies 
among the 9 specifications are calculated according to 
Eqs. 5-10 and the results are reported in the 9x9 matrix 
Ms partially shown below for Specifications from S1 to 
S9. 

𝑀𝑀𝑠𝑠 = 

[
 
 
 
 
 
 
 
 1 0.81 0.82 0.82 0.23 0.45 0.82 0.83 0.21
0.81 1 0.81 0.81 0.10 0.78 0.78 0.67 0.11
0.82 0.81 1 0.80 0.18 0.87 0.87 0.54 0.20
0.82 0.81 0.80 1 0.45 0.77 0.77 0.72 0.05
0.23 0.10 0.18 0.45 1 0.23 0.23 0.23 0.11
0.45 0.17 0.45 0.19 0.04 1 0.37 0.03 0.06
0.82 0.78 0.97 0.77 0.23 0.37 1 0.70 0.10
0.83 0.67 0.54 0.72 0.23 0.03 0.70 1 0.44
0.21 0.11 0.20 0.05 0.11 0.06 0.10 0.44 1 ]

 
 
 
 
 
 
 
 

 

3.3 Components dependencies 

Major components considered in the design are 
summarized in Table 3. By analyzing the structure of the 
sample battery packs, the list of components is retrieved, 
and then the characteristics of each component are 
analyzed to identify the relationships between 
components and specifications as shown in the matrix 
reported in Table 4, where the zeros indicate no influence 

and the ones indicate that the components affect a certain 
specification. As an example, component C1 results to 
affect specifications S1, S2, and S8.  

Table 3. Components of battery pack. 

ID Components ID Components 

C1 
Water-cooled 

Connector  
C14 Cell 

C2 Fuse C15 
Wire Guiding 

Device 
C3 Insulating Joint C16 Casing Bottom 

C4 Wires C17 
Heat sink copper 

plate 

C5 
Casing Bottom of 
Battery System 

C18 Interlayer 

C6 BMS C19 HV Adapter 
C7 Current Sensor C20 Motor 

C8 Relay C21 
Charging 
Interface 

C9 Cooling Pipelines C22 Chargers 
C10 Isolation Device C23 Insulating Pads 
C11 Temperature Sensor C24 Fire-proof Board 

C12 
Information 
Acquisition 

C25 DC-DC Converter 

C13 
Generatrix 

Aggregation 
… … 

Table 4. Specifications/Components relationship matrix. 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 
C1 1 1 0 0 0 0 0 1 0 
C2 1 0 0 1 0 1 0 0 0 
C3 1 0 0 0 0 0 0 0 0 
C4 1 0 0 0 0 0 0 0 0 
C5 1 0 0 0 0 0 0 0 0 
C6 1 1 1 1 0 1 0 1 0 
C7 1 1 1 1 0 1 0 0 0 
C8 1 1 1 1 0 1 0 0 0 
C9 1 1 0 0 0 0 0 1 0 
C10 1 0 0 0 0 0 0 0 0 
C11 1 1 0 1 0 0 0 0 0 
C12 1 1 0 1 0 0 0 0 0 
C13 1 0 0 0 0 0 0 0 0 
C14 1 1 1 1 1 1 1 1 1 
C15 1 0 0 0 0 0 0 0 0 
C16 1 0 0 0 0 0 0 0 0 
C17 1 1 0 0 0 0 0 0 0 
C18 1 0 0 0 0 0 0 0 0 
C19 1 0 0 0 0 1 0 0 0 
C20 1 1 1 1 0 0 0 1 0 
C21 1 0 0 0 0 1 0 0 0 
C22 1 0 0 0 0 1 0 0 0 
C23 1 0 0 0 0 0 0 0 0 
C24 1 0 0 0 0 0 0 0 0 
C25 1 0 0 0 0 1 0 0 0 

For the 25 components identified in this work, the 
dependency matrix of components  𝑀𝑀𝑐𝑐  is computed 
according to the Eq. (15) and partially reported in the 
matrix below:
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𝑀𝑀𝑐𝑐 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1 0.63 0.88 0.88 0.88 0.71 0.69 0.69 0.85 0.88 0.83 0.83 0.88 0.61 0.88 0.88 0.85 0.88 0.55 0.81 0.55 0.55 0.88 0.88 0.55
0.63 1 0.76 0.76 0.76 0.63 0.65 0.65 0.63 0.76 0.67 0.67 0.76 0.53 0.76 0.76 0.68 0.76 0.65 0.65 0.65 0.65 0.76 0.76 0.65
0.88 0.76 1 1 1 0.79 0.78 0.78 0.88 1 0.88 0.88 1 0.67 1 1 0.91 1 0.73 0.86 0.73 0.73 1 1 0.73
0.88 0.76 1 1 1 0.79 0.78 0.78 0.88 1 0.88 0.88 1 0.67 1 1 0.91 1 0.73 0.86 0.73 0.73 1 1 0.73
0.88 0.76 1 1 1 0.79 0.78 0.78 0.88 1 0.88 0.88 1 0.67 1 1 0.91 1 0.73 0.86 0.73 0.73 1 1 0.73
0.71 0.63 0.79 0.79 0.79 1 0.67 0.67 0.71 0.79 0.72 0.72 0.79 0.56 0.79 0.79 0.75 0.79 0.59 0.72 0.59 0.59 0.79 0.79 0.59
0.69 0.65 0.78 0.78 0.78 0.67 1 0.69 0.69 0.78 0.74 0.74 0.78 0.56 0.79 0.79 0.75 0.78 0.62 0.71 0.62 0.62 0.78 0.78 0.62
0.69 0.65 0.78 0.78 0.78 0.67 0.69 1 0.69 0.78 0.74 0.74 0.78 0.56 0.79 0.79 0.75 0.78 0.62 0.71 0.62 0.62 0.78 0.78 0.62
0.88 0.63 0.88 0.88 0.88 0.71 0.69 0.69 1 0.88 0.80 0.80 0.88 0.61 0.88 0.88 0.85 0.85 0.55 0.81 0.55 0.55 0.88 0.88 0.55
0.85 0.76 1 1 1 0.79 0.78 0.78 0.88 1 0.88 0.88 1 0.67 1 1 0.91 1 0.73 0.86 0.73 0.73 1 1 0.73
0.83 0.67 0.88 0.88 0.88 0.72 0.74 0.74 0.80 0.88 1 0.88 0.88 0.62 0.88 0.88 0.88 0.88 0.57 0.84 0.57 0.57 0.88 0.88 0.57
0.83 0.67 0.88 0.88 0.88 0.72 0.74 0.74 0.80 0.88 0.88 1 0.88 0.62 0.88 0.88 0.88 0.8 0.57 0.84 0.57 0.57 0.88 0.88 0.57
0.88 0.76 1 1 1 0.79 0.78 0.78 0.80 1 0.88 0.88 1 0.67 1 1 0.91 1 0.73 0.86 0.73 0.73 1 1 0.73
0.61 0.53 0.67 0.67 0.67 0.56 0.56 0.56 0.61 0.67 0.62 0.62 0.67 1 0.67 0.67 0.63 0.67 0.49 0.62 0.49 0.49 0.67 0.67 0.49
0.88 0.76 1 1 1 0.79 0.78 0.78 0.88 1 0.88 0.88 1 0.67 1 1 0.91 1 0.73 0.86 0.73 0.73 1 1 0.73
0.88 0.76 1 1 1 0.79 0.78 0.78 0.88 1 0.88 0.88 1 0.67 1 1 0.91 1 0.73 0.86 0.73 0.73 1 1 0.73
0.85 0.68 0.91 0.91 0.91 0.75 0.75 0.75 0.85 0.91 0.88 0.88 0.91 0.63 0.91 0.91 1 0.91 0.61 0.84 0.61 0.61 0.91 0.91 0.61
0.88 0.76 1 1 1 0.79 0.78 0.78 0.88 1 0.88 0.88 1 0.67 1 1 0.91 1 0.73 0.86 0.73 0.73 1 1 0.73
0.55 0.65 0.73 0.73 0.73 0.59 0.62 0.62 0.55 0.73 0.57 0.57 0.73 0.49 0.73 0.73 0.61 0.73 1 0.56 0.73 0.73 0.73 0.73 0.73
0.81 0.65 0.86 0.86 0.86 0.72 0.71 0.71 0.81 0.86 0.84 0.84 0.86 0.62 0.86 0.86 0.84 0.86 0.56 1 0.56 0.56 0.86 0.86 0.56
0.55 0.65 0.73 0.73 0.73 0.59 0.62 0.62 0.55 0.73 0.57 0.57 0.73 0.49 0.73 0.73 0.61 0.73 0.73 0.56 1 0.73 0.73 0.73 0.73
0.55 0.65 0.73 0.73 0.73 0.59 0.62 0.62 0.55 0.73 0.57 0.57 0.73 0.49 0.73 0.73 0.61 0.73 0.73 0.56 0.73 1 0.73 0.73 0.73
0.88 0.76 1 1 1 0.79 0.78 0.78 0.88 1 0.88 0.88 1 0.67 1 1 0.91 1 0.73 0.86 0.73 0.73 1 1 0.73
0.88 0.76 1 1 1 0.79 0.78 0.78 0.88 1 0.88 0.88 1 0.67 1 1 0.91 1 0.73 0.86 0.73 0.73 1 1 0.73
0.55 0.65 0.73 0.73 0.73 0.59 0.62 0.62 0.55 0.73 0.57 0.57 0.73 0.49 0.73 0.73 0.61 0.73 0.73 0.56 0.73 0.73 0.73 0.73 1 ]
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3.4 Component clustering and discussion 
on design decision 

The modular design [15] of battery pack provides 
an important basis for battery pack adaptations. 
The dependency matrix of components  𝑀𝑀𝑐𝑐 is 
used as the basis for hierarchical division. To fit 
the algorithm, every item in the matrix is replaced 

by the difference between the original value and 
1. 

From Fig.3, different combinations of 
components can be obtained when different 
thresholds are selected. Considering the existing 
product structure, when the threshold is set to 
0.23, the clustering results, as shown in Table 5, 
can meet the physical constraints of product 
components to the greatest extent.  

 

Fig. 3. Results of Components Clustering. 

Table 5. Battery pack components clustering. 

Clusters Components 

Cluster 1 C1, C9 

Cluster 2 C11 C12C17 

Cluster 3 C20 

Cluster 4 C6 

Cluster 5 C14 

Cluster 6 C7  

Cluster 7 C8  

Cluster 8 C2  

Cluster 9 C19  

Cluster 10 C21  

Cluster 11 C22  

Cluster 12 C25  

Cluster 13 C23 C24 C18 C16 C15C3 C4 C5 C13C10  

From Table 5, components within Cluster 1, 
Cluster 2 and Cluster 13 are suggested to be 
designed as modules because relative high 
dependencies among components can be 

observed in these clusters.  
In Cluster 1, C1 and C9 can be designed as a 

modular, which has been already realized in 
current designs. This shows the rationality of the 
existing design of battery pack.  

In Cluster 2, C11, C12 and C17 are suggested to 
be designed as a module. However, in the current 
design of battery pack, only C11 and C12 are 
designed as a modular, C17 has not yet been 
considered in the module because the 
dependencies among specifications have not been 
well investigated. To better support adaptations of 
battery packs, design modification is suggested to 
form C11, C12 and C17 as a module for the new 
battery pack development.  

In Cluster 13, C16 and C24 are apparently 
physically unrelated. They are clustered into the 
same cluster is due to the simplification of the 
specification data collection in the case study. 
From the dendrogram as shown in Fig. 3, 
components in Cluster 13 are all zero, this is 
because there is a lack of specifications to 
distinguish components C16 and C24. In real 
design, sufficient specification data need to be 
collected to improve the accuracy of the proposed 
method.  
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4 Conclusions 

Big data of product sales is an essential resource 
for the analysis of dependency among product 
specifications. In this work, a statistic-based 
method is proposed for measuring dependency 
among product specifications through the 
analysis of collected data of product sales.  By 
considering the components/specifications 
relationships, a matrix for measuring the 
dependency among product components is 
obtained for Component cluster analysis. 
Clustering results of product components are used 
for support design decision. A case study of 
battery pack in electric vehicle is used to illustrate 
the proposed method.  

Ongoing research activities in this scope 
include (1) integrations of the dependency 
analysis method for facilitating adaptable design, 
product family design, product platform design 
and open architecture product design, etc. [17-19] 
(2) investigation of the evolution trends of 
product specifications in the market by using 
historical data of product sales. 
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