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Abstract. Rod waveguides are important technical objects that serve to transmit vibrations between 
machine elements. Such a transfer is determined by their design features and can be both desirable and 
harmful. The article deals with the problem of modeling the propagation of a monoharmonic wave through 
a rod waveguide, in which a discontinuity appeared, and a shock pair was formed. The features of the 
formation of polyharmonic waves and manifested nonlinear effects leading to a fundamental distortion of 
the dynamic pattern are described. The method of time-frequency analysis of vibration impact processes, 
which determine the dynamics of the system, is used. A calculation scheme and examples are given.

1 Introduction  

The purpose of this article is to provide methods for 
calculating and analyzing systems that transmit 
vibrations through rod systems containing single isolated 
impact pairs. The problems associated with the 
description of the vibration fields arising from the 
propagation of elastic waves in the constructions of 
machines modeled by such systems seem to be relevant 
and have a large number of specific implementations. 
Very often, impact pairs occur due to some faults, but, of 
course, they can correspond to the design features of the 
systems. For example, in ultrasonic technological 
machines, the workflow is determined by the systematic 
collisions of the instrument with the medium being 
processed, and the necessary energy is transferred using 
rod waveguides. In any case, the ability to consider the 
peculiarities caused by heterogeneity and the formation 
of impact pairs is an interesting and multifaceted task. 
Many studies have been devoted to different approaches 
to its study, among which we note, for example, [1–9]. 

2 Typical models 
An example of a linear waveguide with point-like 
inclusions in the form of a system of solids is shown in 
Fig. 1. This system is well studied [2, 10]. 

 
 

Fig. 1. Linear rod with point inclusions. 

Assuming the rod is infinite, and the point inclusions 
are the same (all km m ), with coordinates kx , 

denoting, , ,E S    the Young's modulus, cross-sectional 
area and linear density of the rod, one can obtain the 
equation of motion in partial derivatives: 

1 1 1

(k)
( ) ( , )tt xx tt ku ES u f x,t m u x t        ,      (1) 

Here 1 ( )f x,t  is the distribution of external influences. 
Without limiting generality, we can further assume that 

1  . 
Suppose, for some reason, there have been any 

structural changes or violations of power closures. Then 
at the place of inclusions marked in Fig. 1, various shock 
pairs (discontinuities) arise. An example for an isolated 
impact pair with a coordinate 0x   is given in Fig. 2. 
The discontinuity of the system is determined by the 
"external limiter". Equation (1) is transformed into a 
nonlinear equation 

2
0( ) [ ( ), ( )] ( )tt xx tu c u f x,t u t,x u t,x x     (2) 

 

Fig. 2. External limiter. 

Here с ES - is the speed of sound in the material 
of the rod; ( )x - Dirac function; external force is also 
reduced to a point 0x  ; 0 - the force of the shock 
interaction, corresponding to any hypothesis of impact, 
for example, the hypothesis of Newton [2]. Therefore, 
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for the system Fig. 2, you can write the terms of the 
impact in the form 

(1 ) | ( 0 0) | ; ( 0) ;  | ( , )|<tJ R m u t , u t , u t x        . (3) 

Here ( , )J t   is the impulse and moment of   th 
impact; 2 gap size (Fig. 2); (0,1]R - restitution 
coefficient. In this case 0 ( ).J t t     In the case of 
alternate periodic collisions with each of the limiters 

(Fig. 2): 2
0 0( ),

T

J t t    where, due to the periodicity, 
the impulses are the same ( J J  ), and the phase 0t  is 
fixed, since the impacts are repeated every half of the 
period T. Generalized periodic symmetric function  

2 1
2( ) [ ( ) ( )]

T

j
t t jT t jT T  





     .             (4) 

Our goal is to describe the process of passing a 
monoharmonic wave, excited by 
force 1( , ) ( )cosf x t P x t  , through an impact pair. 

3 Periodic modes 

Further, we confine ourselves to the most important for 
the tasks of this kind of periodic modes. 

If forces with a distribution ,( , , ...)tg x,t u u  act on the 
rod, then an operator relationship takes place [2]: 

,( , ) ( , , ) ( , , ...) ;  t
D

u x t L p x y g x, y u u dy p
t


 
 ,     (5) 

D is the set on which the function is defined. Here the 
problem of wave propagation is considered and assumed 
that x  . Function ( , , )L p x y - describes the 
dynamic compliance operator. For this system [2, 6, 8, 
9]:  

1 (2 , , )( , , ) ( , , ) ,
1 ( , , )
mpl p x yL x y p p l p x y

mpl p x y
 


       (6) 

1( , , ) exp[- | | ]
2

pl p x y x y
c c

  . 

Representation (5) turns into an equation if, among 
the arguments of a complicated function g, there are 
functions that need to be defined. Thus, the solution of 
equation (2) will consist of the sum of the solution of the 
linear problem and the function depending on the impact 
parameters to be determined. In accordance with the 
methods of time-frequency analysis of vibro-impact 
processes [2, 6], you can get the following presentation: 

1( , ) | ( ,0, )|cos[ ( )+ ] ( , ).u x t P L x i t x J t x         (7) 

Formula (7) is determined using the following 
quantities and functions. (i) The modulus and argument 
of dynamic compliance from the point of application of 
an external force to an arbitrary point x: 

| ( ,0, )| и ( )L x i x  . (ii) Phase shift, assuming that the 
moment of impact is combined with the beginning of 
time времени, [0, ]2

T . (iii) ( , )t x - reaction of a 

linear system (rod) to a force action of the form (4) - 
2 ( )
T

t .  
A function  is called a symmetric periodic Green 

function. The theory of such functions is well developed 
[2]. In this case  

2 ( , ) [ ,0, (2 1) ]exp[ (2 1) ]
T k

t x L x i k i k t  




   .  (8) 

That is, the Fourier coefficients are determined using 
relations (6). There are ways to record the series (8) in 
the form does not require infinite series for [0, ]2

Tt . 

Thus, the task of finding the periodic modes of this type 
has been reduced to finding the unknown motion 
parameters that determine the representation (7). This 
can be done using impact conditions (3), replacing 

,  t J J   and considering that collisions occur at x 
= 0.  

4 Аnalytical solution 
In order to obtain an exact analytical solution of the form 
(7), it is necessary to carry out transformations, which 
we mainly omit here, showing the most significant 
results.  

With the help of formula (6) we can 
find

2
1

( , )( ,0, ) ; exp[- | | ].    (9)
2 ( , )

D p x pL x p D x
cpc m p D p x

 


  

Now with the help of (8) for (2 1)p i k    you can 
define the function  ( , )t x . For 0x  : 

2 -1 2 4 2 2 -1
1 1( ) (2 ) ;  | ( )| [ 4 ] ;W p pc m p W p m с    

2 4 2 2 -1
1| ( )| [ 4 ] ;  ( ) (0,0, );W i m с W i L i      

1arg (0,0, ) arctg(2 / )L i c m  . Further we will 
designate 0| (0,0, )|L i U  . From the relation (7) for the 
point 0x   we get 

1 0( , ) cos( )   ( ,0)u x t PU t J t     ,                 (10) 

where the motion parameters — impulse and impact 
phase ( , )J  — can be found from the impact conditions 
(3). At the same time, it is necessary to take into account 
the periodicity of the process and combine the impact 
with the beginning of the counting of time. We have: 

1 0cos  (0,0);  PU J                             (11) 

1 0 0
1

(-0,0) 1sin - [  + ] ,
t (1 )

PU J JZ
R m

  
  

 
   (12) 
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where the physical meaning of the value 0Z  entered is 
obvious: it describes the loss of energy on impact. 
Excluding the phase from (11), (12), we obtain two 
values of the impulse under sinusoidal excitation: 

1 1

2 2 2 -2 2 2 2 2
0 0 0 0 0

1,2 2 -2 2
0 0

- - ( )
 ,

P U Z P U
J

Z

  

 

   



          (13) 

where 0 (0,0)  . Using numerical methods, it was 
found that the plus sign in front of the radical 
corresponds to a stable solution. Therefore, we will 
discard the modes corresponding to the minus sign. 
Taking into account the computed, we obtained all the 
relations defining formula (10). In particular  

2 2
1

2 exp[- (2 1) ] ( ,0)
T 2 (2 1) (2 1)k

i k tt
i k c m k


 








   .        (14) 

On the symmetry interval using the formulas given in 
[2], series (14) can be written in a compact form. For 
0 2

Tt  : 

-1
1

-1
11

exp(-2 m )1 1 1( ,0) ; (0,0) -  th ;
4 2 4 21 exp(- )

ct cTt
c c c mcTm

   


-1
1 1

(-0,0) 1 1 .
t 1 exp(- )m cTm




 
 

The condition for the existence of a periodic vibro-
impact process follows from the conditions of the 
realizability of relations (11) - (13). From the second 
relation (12) we find, taking into account the relations 
found, the condition of existence in the form: 

1

2 4 2 2

1
-1

1 1 1

4 1 1[    ] 1
(1 )1 exp(- )

J m c

P m RcTm

 




 


. 

Due to the presence of wave resistance in an infinite 
rod [11, 12], the value of 0)(Im i,y,хL  and vibro-
impact mode at low levels of excitation ceases to exist 
even in the absence of energy loss during impact (R = 0). 
The nature of dependence ) (J  is shown in Fig.4. 
The dashed line corresponds to unstable modes (J2).  

 
Fig. 3. The dependence of the impact impulse on the 
frequency.  

It can be seen that this dependence is in many ways 
like the nonlinear resonance dependencies found in the 
traditional theory of vibro-impact systems [2, 12]. The 

boundary frequency   is determined by the sign of 
equality in the last inequality and depends on the 
resistance to motion. Near the frequency 0  , the 
modes of the considered type do not exist.  

Before reaching the frequency   , collisions are 
intense. Waveguide is in a resonant state. After the 
passage of this frequency (  ) processes with 
intense collisions are impossible. For a rod with limiters, 
nonlinear effects attached to traditional vibro-impact 
systems can be observed. We note some of them [2, 6, 
12].  

(I) The dynamic phenomena of frequency and 
amplitude pulling. You can get intense vibro-impact 
modes by gradually increasing the excitation frequency 
(the phenomenon of pulling in frequency). The impact 
pulse is proportional to the size of the gap. By smoothly 
increasing the gap, it is possible to achieve an increase in 
the amplitude of oscillations and the intensity of the 
vibroimpact mode (the phenomenon of pulling in 
amplitude).  

(II) Downward jump and hard start. As noted, after 
passing through the boundary conditions for the 
existence of resonant regimes, a sudden decrease in the 
amplitude of the oscillations occurs -"downward jump". 
Return to resonant vibroimpact modes is possible only 
after additional impact at a frequency that is lower than 
the frequency of downward jump (the possibility of a 
hard start). Return without a hard start is possible only 
after a significant decrease in the frequency value. 

The process of wave propagation in the waveguide 
describes the representation (7). An analysis of this 
representation shows that a longitudinal wave propagates 
in the system along the rod to both sides of the included 
shock pair. This wave contains a complete set of 
harmonic components of multiples of the exciting 
frequency. In this case, it is possible such a combination 
of system parameters that the propagating waves can 
contain only higher harmonic components. Waveguide 
will be locked for the main tone. 

When dissipative factors are introduced into the 
model, in addition to energy dissipation upon impact, 
each of the harmonic components of the wave will 
exponentially decay (as exp( ), 0x   . 

5 Other models 
Similarly, other waveguide models with discontinuities 
can be studied. Examples of waveguides with internal 
discontinuities are given in Fig.4, 5.  

Fig. 3 shows a symmetrical impact pair located inside 
the rod. The equation of motion of type (2) is added to 
the equation of the relative motion of the striker in the 
cavity.  

In Fig. 5 impact pair - asymmetrical; an impact 
oscillator is placed inside the rod [2, 10]. 

Methods for analyzing data systems are similar to 
those above. Here the impact conditions are recorded for 
relative coordinates and speeds. 

The list of waveguide models with discontinuities 
can be significantly extended [6, 7]. 
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Fig. 4. The waveguide with the internal discontinuity (I). 

 

Fig. 5. The waveguide with the internal discontinuity (II). 

For example, in Fig. 6 shows a model of two 
colliding rods with attached percussionists.  

Such a model [12] can be used to study the dynamics 
of ultrasonic technological machines. 

 

Fig. 6. Impacting semi-infinite rods with percussionists. 

6 Concluding comments 
We note, first, that if we reject the assumption of 
instantaneous collisions, we can apply the 
singularization method and use more accurate impact 
theories [13]. 

Secondly, the analysis of subharmonic, ultraharmonic 
and combination vibro-impact modes and the 
corresponding waves, arising, for example, under the 
action of a periodic polyharmonic external force, is 
carried out in a completely similar way [5, 12]. 

Any significant additional assumptions entail, in turn, 
complication of the necessary calculations and, quite 
often, lead to the loss of the opportunity to obtain 
approximate analytical expressions, similar to those 
obtained above. At the same time, the proposed method, 
of course, is easily combined with numerical methods 
and can help achieve the required accuracy of solutions 
[11, 14]. 

Thirdly, the specified complications concern also 
structures of the considered objects. The used method of 
time-frequency analysis of vibro-impact processes 
allows us to consider, for example, composite rods or 
multidimensional core and beam structures, etc. 

Here, it is important to know the corresponding 
dynamic compliance operators, which determine the 

periodic Green functions necessary for obtaining 
solutions.  

7 Conclusions 
Strongly nonlinear factors, which manifest themselves in 
waveguides due to the formation of shock pairs through 
which the waves pass, not only introduce a distortion of 
their appearance, but also cause specific dynamic effects. 
As a result, the waves become polyharmonic. Their 
passage is accompanied by the development of nonlinear 
resonance phenomena and the appearance of intense 
vibro-impact modes near certain frequencies. The 
method of time-frequency analysis of vibro-impact 
processes allows us to give an adequate description of 
the systems of this type. 
 
The paper was supported by the Russian Foundation for Basic 
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