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Abstract. The author has presented in this paper his own experimental research on the maximum value and 

distribution of load in transverse roof bracing caused by a planar truss girder with geometrical 

imperfections. The tests were performed on 7.0 m long test models of steel truss made of square hollow 

sections. The tests performed verify standard recommendations concerning adoption of uniformly 

distributed notional load of transverse roof bracing and confirm the relations indicated in the discussed 

literature. The experimental research results were cross-checked by relevant numerical analysis. A 

comparison of notional loads recommended by the standard and literature with test results was performed 

and conclusions were formulated. 

1 Introduction 

Use of steel trusses as main structures in hall objects 

is a very economic solution due to high in-plane stiffness 

of truss girders. Such stiffness originates, first and 

foremost, from large spacing of truss chords connected 

by proper web members. Additionally, the space that 

occurs between the chords allows for placement 

of installation elements inside the hall roof structure. 

Unfortunately, planar trusses feature low out-of-

plane stiffness, which causes a need to stabilise their 

compressed chords by side supports. In the case 

of compressed top chords, these supports are shaped 

mostly as a transverse roof bracing (intermediate 

support) or by connection of the chord with roof 

trapezoidal sheet (quasi-continuous support) [1, 2]. 

In both cases such bracings must feature not just proper 

load bearing capacity but also sufficient stiffness to limit 

the buckling lengths of the compressed chord [3, 4]. 

Impact of stiffness of transversal bracings on truss chord 

buckling lengths was confirmed experimentally and 

described in [5, 6]. 

A classic computational model of a compressed truss 

chord supported by an intermediate bracing is the 

Winter’s model. In this model, the compressed chord 

is analysed as a separate spring-supported column 

compressed by an invariable force. Geometrical 

imperfections in the Winter’s model were considered, 

among other, in [7], whereas in [8] the results 

of computation of the classical Winter’s model were 

compared with 3D numerical analysis performed 

for a certain planar truss. 

Transverse roof bracings carry horizontal loads that 

originate mostly from wind pressure on given object’s 

gable wall. According to the standard [9] during 

designing of bracing, additional load originating from 

geometrical imperfection of the roof girder upper truss 

chord featuring parabolic shape with maximum 

e0 = L/500 (L – truss length) must be taken into account. 

The standard guidelines recommend substitution of the 

chord’s geometrical imperfection by adoption of a uni-

formly distributed notional load q taking into account the 

number of braced trusses m (αm coefficient) and the 

second order effects δq from load q and external load. 

Both distribution of the notional load and formulae 

compatible with standard [9]  are presented at Figure 1. 

Fig. 1. Standard-indicated notional load of transverse roof 

bracing originating from a girder with imperfections 

 The standard rules originate from an analogy 

between a compressed column with geometrical 

imperfection and a parabolic arch loaded with uniformly 

distributed load. However, many factors such as: 

- quasi-parabolic force distribution in the compressed

chord,

- interaction between the compressed chord with web

members and the stretched chord,

- lack of verticality of webs originating from the top

chord imperfections,

- simultaneous bottom chord imperfections,

- elastic deformation of the truss caused by external load,

have been disregarded.

In recent years, many researchers have proved 

analytically that those factors have significant impact 

on the magnitude, and first and foremost, on the 
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distribution of the substitute load q [10, 11, 12]. 

In these articles the sign-change character of the 

substitute load originating from a stepped changing 

chord compressive force and lack of verticality of webs, 

was demonstrated. Formulae presented in [10] (Fig. 2) 

allow for taking into account both a diverse distribution 

of the force in the compressed chord and a diverse shape 

of chord imperfections (Fφ) as well as a lack of vertica-

lity of webs (Fϕ). 

Fig. 2. Bracing load as per [10] 

The notional load model shown in [11] allows for 

determination of the distributed load function, which 

is particularly valuable e.g. in the event of use of 

trapezoidal sheet as the bracing. The more specific 

notional load model presented in [11], together with the 

relations is presented in Figure 3.  

Fig. 3. More specific notional load model as per [11] 

However, the relations indicated in [10 and 11] were 

not confirmed experimentally until now. 

2 Experimental research 

The relations demonstrated by the authors of [10] were 

verified during author’s own experimental research 

performed on ten 7.0 m long truss models. The models 

were made in accordance with the scheme shown 

in Figure 4. Square hollow sections and welded 

connections of V-type webs with chords were used. 

A single span, freely supported static scheme of the truss 

and gravitational load P applied to the top chord joints 

were applied.  

Fig. 4. Test model scheme 

The model placed at the test stand (Fig. 5) was 

laterally supported in each upper chord joint as well as in 

the middle and outermost joints of the bottom chord. 

To simulate the truss and bracing connection, a rigid 

method of lateral support of the truss joints was assumed 

due to horizontal displacement. 

Fig. 5. Test stand and models 

Selected joints were supported with a specially 

designed support that would allow for measurement of 

the force transmitted to the support with simultaneous 

freedom of displacement of vertical joint and its rotation. 

Six force sensors of 2.0 kN, 5.0 kN and 10.0 kN ranges 

were used. The sensors recorded both compressive (+), 

as well as tensile (-) forces with 0.001 kN accuracy. The 

sensors were located in accordance with the anticipated 

distribution of force action on side supports. To limit the 

number of sensors, symmetry of the test model was 

utilized (Fig. 6). Structural details of the applied side 

supports are presented in Figure 7. Horizontal displace-

ment LVDT sensors were also installed at the force 

measurement point to check support susceptibility due to 

displacement. Sensors with measurement range 300.0 

mm and accuracy of 0.001 mm were used. 

The sensors were fitted in such way, so that measure-

ment of horizontal displacement in both directions could 

be effected. Deflection of the truss in the middle of its 

span was also detected. 

Fig. 6. Force and displacement sensors locations 
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Fig. 7. Technical details of used side supports 

The real strength properties of steel and geometry of 

used sections were determined in destructive tests 

performed for tubular samples (20) and flat samples (21) 

taken from section walls. The apparent proportional limit 

strength RE,0.05, apparent yield strength  Re,0.2,, ultimate 

strength Rm, as well as steel modulus of elasticity E and 

tube cross-section area A were determined. The average 

results are shown in Table 1. 

Table 1. Steel and sections parameters 

RE,0.05 

[MPa] 

Re,0.2 

[MPa] 

Rm 

[MPa] 

E 

[GPa] 

A (RK 

30x30x3) 

[cm2] 

A (RK 

20x20x2) 

[cm2] 

376.6 453.7 476.2 203.8 3.05 1.37 

Before the tests were commenced, measurement 

of real initial geometrical imperfections of each test 

model as per standard [13] was performed. 

Those imperfections did not exceed the admissible 

values. The maximum measured out-of-plane 

imperfection of chord reached the value of 10.4 mm 

(L/670). Due to the range of used measurement sensors, 

higher value of the initial imperfection (than that 

recommended in the standard L/500) was assumed. 

In the experimental research a sinusoidal (as more 

natural) shape of chord imperfection (contrary to [10] 

and [11]) featuring the maximum value in the middle 

 of the span equal to e0 = 40.0 mm (L/175), was adopted. 

The adopted sinusoidal truss deformation was 

attained by forced displacement of side supports of the 

top chord. Said displacement caused a certain truss stress 

condition and certain support forces Fn
0.0 measured 

by the force sensors. Then, the truss was loaded in top 

chord joints by gravitational load P = 1.8 kN. This load 

caused a change of values of support forces marked 

as Fn
1.8. The differences between both values 

(Fn
1.8

 – Fn
0.0) are the sought reactions Fn of the truss with 

imperfections on the transverse roof bracing. 

3 Test results 

The above described tests were performed on 10 

identical truss models with adopted conditions of the 

initial deformation and load. The results achieved were 

rounded with 0.01 kN accuracy and demonstrated in 

Table 2. An assumption was made that the relation 

between the bracing load and the initial truss 

deformation was symmetric and the results achieved 

were true also for those joints, for which no reaction 

measurements were performed. In all tested models 

change of the bracing load sign nearby joint No 2 was 

noted. The average vertical truss deflection was noted as 

6.58 mm (deflection caused by load P). 

Table 2. Test results 

M
o

d
el

 Support 

reaction 

Node number 

0 1 2 3 4 

Assumed 

deformation 

[mm] 

0.0 15.0 28.0 37.0 40 

1 Fn
0.0 0.84 -0.22 -0.03 -0.25 -0.54

Fn
1.8 0.83 -0.34 0.08 0.00 -0.14

Fn -0.01 -0.12 0.11 0.25 0.40 

2 Fn
0.0 0.44 -0.03 -0.19 -0.03 -0.57

Fn
1.8 0.39 -0.21 -0.08 0.18 -0.16

Fn -0.05 -0.18 0.11 0.21 0.41 

3 Fn
0.0 0.42 -0.06 -0.03 -0.06 -0.66

Fn
1.8 0.35 -0.24 0.04 0.15 -0.24

Fn -0.07 -0.18 0.07 0.21 0.42 

4 Fn
0.0 0.63 -0.30 -0.31 -0.28 -0.73

Fn
1.8 0.59 -0.49 -0.29 0.00 -0.25

Fn -0.04 -0.19 0.02 0.28 0.48 

5 Fn
0.0 0.50 -0.07 -0.08 -0.19 -0.52

Fn
1.8 0.47 -0.20 -0.02 -0.03 -0.14

Fn -0.03 -0.13 0.06 0.16 0.38 

6 Fn
0.0 0.54 -0.01 -0.38 -0.52 -0.67

Fn
1.8 0.50 -0.16 -0.29 -0.32 -0.30

Fn -0.04 -0.15 0.09 0.20 0.37 

7 Fn
0.0 0.18 -0.03 -0.04 -0.83 -1.78

Fn
1.8 0.14 -0.21 0.03 -0.55 -1.43

Fn -0.04 -0.18 0.07 0.28 0.35 

8 Fn
0.0 0.31 -0.19 -0.05 -0.99 -0.49

Fn
1.8 0.24 -0.36 -0.02 -0.77 -0.09

Fn -0.07 -0.17 0.03 0.22 0.40 

9 Fn
0.0 0.19 -0.24 -0.07 -0.37 -0.65

Fn
1.8 0.13 -0.40 -0.11 -0.12 -0.31

Fn -0.06 -0.16 -0.04 0.25 0.34 

10 Fn
0.0 0.56 -0.07 -0.23 -0.39 -0.63

Fn
1.8 0.47 -0.25 -0.18 -0.15 -0.25

Fn -0.09 -0.18 0.05 0.24 0.38 

Examples of truss with imperfections reactions on the 

transverse bracing are demonstrated in Figure 8. The 

results were approximated by the 4th order polynomial 

function using the least squares method. Also the 

approximation curve determination coefficient has been 

presented. 
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Fig. 8. Examples of measurements results 

Empirical values of the transverse bracing were also 

determined for the analysed truss. Said values were 

computed in accordance with the experiment 

assumptions (nodal load P = 1.8 kN and sinusoidal 

imperfection shape e0 = 40.0 mm). In [10] and [11] 

a parabolic shape was considered, but the relations 

presented therein can be applied, by analogy, in the case 

of sinusoid half-wave shaped imperfection. Distribution 

of the normal force in the truss upper chord N(x) and its 

deformation y(x) as well as load distribution q(x) are 

presented in Figure 9 whereas particular elements 

of load Fn are demonstrated in Table 3. Figure 9 

indicates also the differences between function q(x) in 

the event of any parabolic and sinusoidal chord 

imperfection. 

Fig. 9. Functions N(x), y(x) and q(x) 

Table 3. Empirical analysis 

Fn = Fφ + Fϕ 

Node number 

0 1 2 3 4 

Fφ As per [10] -0.08 -0.11 0.00 0.12 0.14 

As per [11] -0.17 -0.19 0.03 0.20 0.26 

Fϕ as per [10] & [11] 0.00 0.05 0.08 0.11 0.12 

Comparison of the averaged values of reactions on 

side supports determined in tests with Fn values achieved 

from empirical relations and standard recommendations 

[9] are presented in Table 4.

Table 4. Comparison of results 

Node number 

0 1 2 3 4 

As per [9] 0.12 0.12 0.12 0.12 0.12 

As per [10] -0.08 -0.07 0.08 0.23 0.26 

As per [11] -0.17 -0.14 0.11 0.31 0.38 

Experimental average -0.05 -0.17 0.05 0.22 0.39 

The reactions computed based on [10] and [11] 

feature sign change distribution and much higher values 

of the maximum load than those originating from the 

standard recommendations. In both cases change of the 

sign occurs at L/4 distance from the outermost support. 

The differences between the values computed as per [10] 

and [11] originate from, among other things, assumption 

of the imperfection in form of a broken line in the case 

of [10] and adoption of parabolic function N(x) instead 

of the step function in the case of [11]. 

The average test results indicate more than three 

times higher bracing load in the middle node compared 

to the standard load. Comparison of the experimental 

results with the empirically computed load confirms 

its sign-change character and indicates a more complex 

distribution resembling a polynomial function. 

Said distribution has an extremum in the chord span 

middle. The sign change place is located in the interval 

between nodes 1 and 2, but the measured value 

of the support node load (node 0) is much lower than 

in the case of any theoretical analyses and indicates 

existence of additional local extrema in the intervals 

between nodes 0 and 1 as well as 7 and 8. The achieved 

load distributions are compared in Figure 10. 

Fig. 10. Comparison of experimental results with theoretical 

analysis 
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Presented comparison shows good qualitative 

convergence of empirical solutions with tests results. 

In all analysed methods we have noted a non-uniform 

distribution of load changing sign at the distance 

of approximately L/4 from the support. However, certain 

quantitative divergence could be noted. Bracing load 

calculated according to [11] has higher values than in the 

case of calculations as per [10] in each node, and its 

maximum value (0.38 kN) is very close to the maximum 

value observed during research work (0.39 kN). At the 

same time, load value in nodes 0, 2 and 3 calculated 

according to [10] and [11] is higher than the test results. 

The divergence observed has been explained below 

based on the numerical analysis. 

4 Numerical analysis 

A numerical model featuring geometry and material 

characteristic compatible with performed experimental 

research was developed. Beam MES elements with 6 

degrees of freedom in the nodes were used [14]. 

Accuracy of calculations was enhanced by increasing the 

number of elements between the nodes in such way so 

that length of a single MES element did not exceed 

150.0 mm. Top chord was modelled using 48 beam 

elements (6 elements between the nodes) whereas the 

web beams and supporting columns were modelled using 

5 beam elements. Rigid connection between web beams 

and chords was adopted. Calculations were performed 

using geometrically non-linear analysis (GNLA). 

Numerical analyses were performed to review the 

experimental research. In order to do that, the numerical 

model was subjected to the same procedure as the 

experimental model. The truss bracing was modelled as 

a system of rigid (due to horizontal displacement) side 

supports in which displacement was forced in 

accordance with the assumed sinusoidal deformation of 

the top chord (Tab. 2).  Then, the numerical model was 

loaded with vertical nodal load P = 1.8 kN. Reaction of 

the truss with imperfections on the bracing was defined 

as a difference of values of support reactions Fn before 

and after model loading with forces P. For comparison 

purposes, support reactions were also determined in the 

case of direct imperfection modelling (Initial Geometric 

Imperfection Method). The values achieved are 

presented in Table 5. 

 Differences between values achieved in the case of 

forced support displacement and direct imperfection 

modelling, originate from occurrence of additional 

normal forces in the truss chord due to forced 

displacement of supports. Those forces had quasi-

parabolic distribution and reached their maximum value 

0.67 kN in the span middle and increased respectively 

force distribution N(x) depending on load P. 

Table 5. Numerical analysis results 

Support 

reaction 

Node number 

0 1 2 3 4 

Forced support displacement 

Fn
0.0 0.58 -0.06 -0.01 -0.28 -0.34

Fn
1.8 0.53 -0.25 0.02 -0.04 0.01 

Fn -0.05 -0.19 0.03 0.24 0.35 

Direct imperfection modelling 

Fn -0.01 -0.17 0.08 0.25 0.33 

The results achieved are presented in Figure 11. They 

are compatible with the test results. The differences 

between particular values of nodal load in the numerical 

analysis and tests do not exceed 10%. Numerical model 

deflection caused by applied vertical load is 7.08 mm, 

whereas that caused by load P and dead weight is 

7.31mm.  

Fig. 11. Comparison of experimental and numerical results 

The earlier indicated divergence between relevant 

values of the empirical and experimental analysis were 

confirmed also in the numerical analysis. An assumption 

was made, that they were caused by elastic deformation 

of the bottom chord, which was supported exclusively at 

its ends and in the middle of its span. The maximum 

value of transversal bottom chord deformation, in the 

case of direct imperfection modelling, was 2.36 mm 

(Fig. 12). It has considerable impact on the web 

members inclination angle and force component Fϕ of 

the bracing load. To confirm this hypothesis, numerical 

analysis was performed, in which the bottom chord was 

transversally supported at each joints. Furthermore, 

a case was analysed, in which no side support would 

occur lengthwise in the bottom chord. The results 

achieved are presented in Table 6. 

Fig. 12. Numerical model deformation [mm] 
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Table 6. Impact of bottom chord support on bracing load 

Bottom 

chord 

support 

Support 

reaction 

Node number 

0 1 2 3 4 

In each 

node 

Fn
0.0 0.71 -0.23 -0.10 -0.27 -0.20

Fn
1.8 0.63 -0.30 -0.01 -0.04 0.07 

Fn -0.08 -0.07 0.09 0.23 0.27 

No 

support 

Fn
0.0 0.06 -0.01 0.01 -0.06 0,01 

Fn
1.8 0.29 -0.12 0.04 0.04 0.13 

Fn 0.23 -0.11 0.03 0.10 0.12 

Comparison of test results with those achieved from 

numerical analysis and empirical formulae, allows for 

arriving at the following conclusions pertaining to the 

considered relations: 

- bracing load is a non-uniform and sign-changing load;

- maximum load value achieved in the tests (0.39 kN) is

by 225% higher than the value recommended by relevant

standard (0.12 kN);

- value of load at the outermost support achieved from

the tests and numerical analysis (- 0.05 kN) is lower than

that originating from empirical analyses by 60% [10] and

240% [11];

- omission of bottom chord elastic deformation in the

empirical formulae may lead to imprecise load

estimation;

- good compatibility of test and numerical analysis

results was achieved. Said compatibility is

approximately 90% (Node 4, experimental value

0.39 kN – numerical analysis 0.35 kN).

It should be noted that said values are proper for the

considered test model and their generalisation requires

further research.

5 Conclusions 

Performed experimental research confirms complex 

distribution of the roof bracing load from a truss girder 

with imperfections. This distribution features not only 

higher values of nodal load than in the case of standard 

recommendation, but also sign-changing distribution 

dependent not only on the initial imperfection curvature 

and compression force distribution in the chord, but also 

on the conditions of support of the bottom chord and its 

elastic deformation. Therefore, theses presented in [10], 

[11] and [12] were confirmed experimentally.

It should be stated that considering the complexity of

relation between bracing load and truss imperfections, 

currently standard rules should be verified and 

application of the simplified model should be 

abandoned. Considering the fact that designers have now 

free access to advanced computation programmes, it is 

recommended that in the event of designing of truss 

structures with bracings, complete 3D model and direct 

modelling of imperfections should be applied until 

proper corrections are introduced into the design 

standards. 

Standard rules, that will be formulated in the future, 

should take into account not just the factors presented in 

this paper, but also the possibility of occurrence of initial 

imperfections in the bottom chord, flexibility of joints 

and stiffness of the bracing itself. 

References 

1. A. Biegus. Trapezoidal sheet as a bracing preventing

from out-of-plane buckling, Archives of Civil and

Mechanical Engineering, 15, 735-741 (2015)

2. Sz. Pałkowski. On the stabilization of roof purlin

with corrugated sheet, Inżynieria i Budownictwo, 9,

473-475 (2017) [in Polish]

3. Sz. Pałkowski. The calculation models of

transversal roof bracings, Inżynieria i Budownictwo,

3, p.: 131-133  (2016) . [in Polish]

4. A. Biegus, D. Wojczyszyn. Studies on buckling

length of chords for out-of-plane instability,

Archives of Civil and Mechanical Engineering,

11/3, 507-517 (2011)

5. J. Jankowska-Sandberg, J. Kołodziej. Experimental

study of steel truss lateral-torsional buckling,

Engineering Structures, 46, 165-172 (2013)

6. M. Krajewski, P. Iwicki. Analysis of brace stiffness

influence on stability of the truss, International

Journal of Applied Mechanics and Engineering,

20/1, 97-108 (2015)

7. J. A. Yura. Winter’s bracing approach revisited,

Engineering structures, 18/10, 821-825 (1996)

8. P. Iwicki. Comparison of classical Winter’s bracing

requirements of compressed truss chord with

stability analysis of 3D truss-model, Proceedings in

Applied Mathematics and Mechanics, 9/1, 247-248

(2009)

9. PN-EN 1993-1-1: 2006. Eurocode 3: Design of steel

structures. Part 1-1: Genaral rules and rules for

building [in Polish]

10. Sz. Pałkowski, M. Piątkowski. On the calculation of

lateral roof bracing, Inżynieria i Budownictwo, 4,

210-213 (2014) [in Polish]

11. D. Czepiżak, A. Biegus. Refined calculation of

lateral bracing systems due to global geometrical

imperfection, Journal of Constructional Steel

Research, 19, 30-38 (2016)

12. L. Niewiadomski, J. Zamorowski. The load of

transversal bracings resulting from geometric

imperfection of single-span trusses of roofs,

Proceedings of the 12th International Conference on

New Trend in Static and Dynamics of Buildings,

Bratislava, Slovakia, (2014) [in Polish]

13. PN-EN 1090-2: 2002. Execution of steel structures

and aluminium structures. Technical requirements

for steel structures [in Polish]

14. SOFiSTiK - Structural Desktop: User interface of

SOFiSTiK software. SOFiSTiK AG. 2008

6

MATEC Web of Conferences 262, 09008 (2019) https://doi.org/10.1051/matecconf/201926209008
KRYNICA 2018


