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Abstract.  Recent developments in the field of modal-based damage detection and vibration-based 

monitoring have led to a renewed interest in automated procedures for the operational modal analysis 

(OMA). The development of automated operational modal analysis (OMA) procedures marked a 

fundamental step towards the elimination of any user intervention since traditional modal identification 

requires a lot of interaction by an expert user. A key for effective automation of OMA is depended on well-

defined modal indicators for a clear indication about which modes are to be selected as the physical modes. 

In all modal analysis, the construction of stabilization diagrams is necessary in order to illustrate, and 

decide, if a mode is physical or not for predefined range of the model order. On the other hand, the use of 

stabilization diagram tools involves a large amount of user interaction, costly, time-consuming process and 

certainly unsuited for online applications. Therefore, the development of automatic procedures for the 

analysis of stabilization diagrams by resembling decision-making process of a human has been carried out 

in recent years. For the sake of clearness, the automation of the interpretation of stabilization diagrams can 

generally be divided into two steps in order to speed up the process: a) elimination of noise modes and b) 

clustering of physical modes in order to obtain the most representative values of the estimated parameters of 

each clustered mode. In recent years, several alternative procedures have been proposed for clustering 

techniques. Therefore, this review aims to provide relevant essential information on the recent 

developments of cluster analysis in automated OMA. A literature review of existing clustering algorithm 

has been carried out to find best practice criteria for automated modal parameter identification which 

involving the general concepts of these techniques as well as the pro and cons of applying these clustering 

techniques are also discussed and summarised.  

1 Introduction   

Recent developments in the field of modal-based 
damage detection and vibration-based monitoring 
have led to a renewed interest in automated 
procedures for the operational modal analysis (OMA) 
or output-only identification of dynamic parameters. 
The development of automated operational modal 
analysis (OMA) procedures marked a fundamental step 
towards the elimination of any user intervention since 
traditional modal identification requires a lot of 
interaction by an expert user. It frequently used for 
repetitive test or numerous data sets for the same 
OMA test. This is crucial for the application of 
structural health monitoring (SHM) where the input 
data need to be processed or analyzed automatically so 
that the variations of modal parameter identification 
can be straightforwardly identified [1]. A key for 
effective automation of OMA is depended on well-

defined modal indicators for a clear indication about 
which modes are to be selected as the physical modes. 

In all modal analysis, the construction of 
stabilization diagrams is necessary in order to 
illustrate, and decide, if a mode is physical or not for 
predefined range of the model order [1,2]. Since the 
model of the system is often oversized, thus, the plot 
will contain noise modes and mathematical modes. 
The noise modes are caused by physical reasons, while 
the mathematical modes are generated to ensure the 
mathematical description of the measured data. 
Theoretically, the physical poles should be stabilized 
and can be easily identifiable along the vertical 
alignment of stable poles, whereas the computational 
or mathematical poles are scattered, showing the 
criterion of the unstable poles in the stabilization 
diagram. This is based on the comparison of the poles 

associated with a given model order with those attained 

from a one-order lower model [3]. 
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On the other hand, the use of stabilization 
diagram tools involves a large amount of user 
interaction, costly, time-consuming process and 
certainly unsuited for online applications. Therefore, 
the development of automatic procedures for the 
analysis of stabilization diagrams by resembling 
decision-making process of a human has been carried 
out in recent years. For the sake of clearness, the 
automation of the interpretation of stabilization 
diagrams can generally be divided into two steps in 
order to speed up the process: a) elimination of noise 
modes and b) clustering of physical modes in order to 
obtain the most representative values of the estimated 
parameters of each clustered mode [4]. In recent years, 

several alternative procedures have been proposed for 

clustering techniques. In the following section will  be 
discussed about the main procedures of cluster 
analysis. 

Thus, the automated OMA consists of the 
following steps and clearly illustrated in Figure 1:  
(1) Measure the responses of the structure and 

estimate the modal parameters using a high model 
order, n modes. 

(2) Construct Stabilization diagram by estimating 
poles with an increasing model order and 
illustrate, and decide, either mode is physical or 
computational modes 

(3) Classify the n modes in physical and 
computational modes using a clustering algorithm. 
 
 

 
 
Fig. 1. Steps of the proposed methodology for automated 
OMA. 

 
This review aims to provide relevant essential 

information on the recent developments of cluster 
analysis in automated OMA. A literature review of 
existing clustering algorithm has been carried out to 
find best practice criteria for automated modal 
parameter identification which involving t he general 
concepts of these techniques as well as the pro and 
cons of applying these clustering techniques are also 
discussed and summarised. 

2 Cluster analysis  

Cluster analysis is a technique to classify or group 
objects regarding their characteristics. The classified or 

clustered objects should then reveal high internal 
(within -cluster) homogeneity and high external 
(between cluster) heterogeneity [5]. In the case of 
parametric identification techniques that apply the 
model of several orders, the aims are to cluster the 
mode estimates that possess a similar physical mode. 
For instance, all the modes estimate the corresponding 
natural frequency and modal damping ratio based on 
the results provided by five model orders as shown in 
Figure 2 below. The easiest way to do cluster analysis 
is by making the figure simpler by showing only the 
physical modes. In a real application, some further 
points randomly scattered would be present. 
Typically, the cluster analysis is to group the points 
that are near to each other (circles of the figure). The 
concepts graphically illustrated for a case where only 
two variables are considered. The maximum number 
of variables used for graphical interpretation is three, 
more than that is considered impossible. The variables 
or modal quantity can be natural frequency, modal 
damping ratio, mode shape (projected onto a fixed 
vector), modal participation and mode shape scaling 
[1]. 

 
Fig. 2. Scheme to illustrate the application of clustering 
algorithms. 

 
Most commonly used clustering algorithms can 

be classified into three general categories: hierarchical, 
partitioning methods and histogram analysis that will 
be discussed in the next section. 

2.1. Hierarchical clustering  

Hierarchical clustering algorithms are constructed by a 
hierarchy of a treelike structure. Theoretically at 
initial, each object is considered as a cluster. Then, the 
two nearest clusters (or individuals) are joint together 
to become a new aggregate cluster which can reduce 
the number of clusters by one in each step until the 
distance between all remaining clusters is larger than a 
user-defined threshold value. Finally, all individuals 
are grouped into one large cluster as shown in Figure 3 
below [6]. 
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Fig. 3. Hierarchical clustering. 
 
 Thus, the execution of the of the hierarchical 
algorithms consist of the following key steps: 
(1) calculation of the similarity between every pair of 

objects in the dataset, 
(2) connecting of the objects in a hierarchical tree 

and,  
(3) lastly, the definition of a rule to cut the 

hierarchical tree at a certain level, assigning all 
the objects of each branch to a single cluster.  

 
There is a different application of hierarchical 
algorithms such as single linkage, complete linkage, 
average linkage, Ward´s method, and the centroid 
method depends on the distance between clusters [5].  
 In a literature, Verboven P. et al. used hierarchical 
clustering for analysis stabilization diagrams by the 
application of the LSCF method (Least Squares 
Complex Frequency Domain) to datasets collected in 
an experimental modal analysis [7]. In the proposed 
method, only the group of the estimated pole is 
considered, while mode shapes are neglected and only 
applied in a second phase to assess the quality of the 
formed groups. Meanwhile, Pappa et al. were possibly 
the primary applied such an approach, using the 
eigenfrequency difference and the MAC value as 
distance measures [8]. Even though, such an approach 
was not clearly defined as ‘hierarchical clustering’ but 
it  worked effectively for automating the Eigensystem 
Realization Algorithm (ERA) for an experimental 
modal analysis (EMA) of the Space Shuttle tail rudder 
[9]. The following research was expanded by applying 
genetic algorithms, to find the ‘optimal’ ERA 

parameter values (besides n) [10]. Moreover, Chauhan 
and Tcherniak [11] did a bit changes from the original 
approach of Pappa et al. [8]. Goethals et al. introduced 
another way of distance measure, integrating the 
eigenfrequency and damping ratio difference [12]. 
Thus, such an approach capable to detect closely 
spaced modes via the presence of modes with the same 

model order in the same cluster; and then 
distinguished using the MAC value. Allemang et al. 
applied another distance measure, namely the MAC 
value between extended, pole-weighted mode shape 
vectors that are obtained from each mode instead of 
the mode shape [13]. Verboven et al. proposed an 
alternative approach, where it is presumed that the 
number of modes in one cluster is a previously 
identified but this is rarely to occur [14].  An effective 
application of hierarchical clustering was stated by 
Magalhães F. et al., who analyzed more than 2500 
high-quality data sets collected on a 280 m-span 
concrete arch bridge [15]. Besides that, the similar 
researchers are then proposed alternative hierarchical 
algorithms to calculate the distance between already 
formed clusters by using the single linkage [6]. By 
using this approach, the distance between two clusters 
is equal to the smallest distance between objects inside 
the two clusters. In the selection of the tree cut level 
for the hierarchical tree is based on the maximum 
limit for the distance between any point and its closest 
point of the same cluster. It has the great advantage of 
requiring only two user-defined parameters, which are 
the maximum limit for the distance between any point 
and its closest point of the same cluster and the 
number of expected modes as well as does not require 
the previous construction of a stabilization diagram, 
because all mode estimates, stable or unstable, are 
considered. However, it has the drawback of 
demanding much more user-defined parameters 
particularly in the selection of stable poles. 
 The hierarchical algorithms have the benefit of 
being deterministic and allowing a good selection of 
the final number of clusters, based on the previously 
constructed hierarchical tree. However, they have the 
drawback of being computationally demanding in the 
presence of many individuals because the similarity  of 
each pair needs to be computed. In addition, it very 
sensitive to outliers.  

2.2. Partitioning methods  

Partitioning methods are from non-hierarchical 
clustering procedures and often referred to as K-means 
clustering. Generally, this method works by assigning 
objects into a predefined number of clusters (K) using 
the following procedure. 
(1) Specify the number of random seeds (kernals) or 

provide seeds as the initial cluster centers. 
(2) Assign samples to ‘nearest’ seed by previously 

specified threshold distance. 
(3) Iteratively reassign samples to groups in order to 

minimize within -group variability (i.e., assigned 
to a group with  ‘closest’ centroid). 
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The result is a set of clusters that are as compact and 
well-separated as possible. The following procedure 
was illustrated in Figure 4 below. 
 

 
 

Fig. 4. Partitioning clustering. 
 
 In references, non-hierarchical algorithms were 
applied for autonomously analysis data in stabilization 
diagrams [12,16,17]. In the early phase, the estimated 
modes are displayed like in the scheme presented in 
figure 2 and a clustering technique is joint  with self-
learning algorithms which allow a better selection of 
the algorithm parameters and the evaluation of 
physical or computational of the attained clusters. An 
enhancement of the K-means algorithm, named as 
Fuzzy C-mean clustering algorithm was then 
introduced which operated by giving a membership 
grade instead of relating an object to a certain group 
when distinguishing physical poles from 
computational modes resulting from a frequency-
domain maximum likelihood estimator (MLE) for a 
single model order that applied to experimental modal 
analysis data [16,18]. The difference is based on a total 
of six characteristics that include, for instance, the 
standard deviation of the pole estimate, which is an 
output of the implemented identification algorithm, 
and indices that assess the complexity of the mode 
shape estimates. Otherwise, Scionti and Lanslots 
applied fuzzy C-means clustering to group the modes, 
present in a stabilization diagram, directly into a user-
defined number of clusters and represented in 
damping vs frequency diagram [19]. However, this 
approach had drawbacks of predefined the number 
clusters, several non-intuitive improvements to the 
basic C-means clustering algorithm and did not 
provide a reliable outcome regarding a combination 
with genetic algorithms. The following approach, a 
Fuzzy C- means clustering algorithm with using the 
representation of the poles in the z-plane was then 

introduced to cluster all the mode estimates from 
several datasets instead of using classical 
representation on a damping vs frequency diagram due 
to the coefficient of variation of the damping estimates 
is significantly larger than frequency estimates [17]. 
However, the shape of clusters leads to more spherical 
nature.  
 The partitioning methods have the advantage of 
being fast processing algorithm than hierarchical 
clustering for many variables. Besides that, it possibly 
will  produce tighter clusters than hierarchical 
clustering. However, these clustering procedures have 
the drawback of the need to predefine the number of 
clusters and the necessity to choose the clusters seeds. 
Besides that, they have the limitation  of not being 
deterministic nature of the solution, as leads to 
produce inconsistent results due to the frequent use of 
a random selection of the seeds. In addition, most of 
these clustering techniques are prone to finding 
elliptical and spherical clusters. 

2.3. Histogram analysis  

Histogram analysis is based on the counted number of 

(stable) modes in a narrow bin of the frequency axis in 

the stabilization diagram [20]. 
In references, Scionti et al. [21] use this as the 

basis for an automated modal parameter estimation 

procedure that can reduce the user-defined parameters, 

including the bin width. Its performance was assessed 

based on manually selected modes for dispersed data. A 

great combination was shown for the PolyMAX 

identification method [22] that can provide a clear 

stabilization diagram but biased for modal damping ratio 

estimates [23]. On the other hand, histogram analysis 

was brought poor performance for the least-squares 

complex exponential (LSCE) identification method [24].  

3 Conclusions  

This review will serve as a base for future studies in 
enhancing the automation of OMA method as modal 
information engine in structural health monitoring 
(SHM) systems by reducing some common drawbacks 
of available automated OMA methods as stated below. 
• Identification of actual modes was based on 

several statically set parameters;  
• A time-consuming calibration process for each 

monitored structure was required at startup;  
• The static identification of thresholds and 

parameters was often inadequate to follow natural 
changes in modal properties of structures due to 
damage or environmental effects. 

 
Thus, an alternative approach was required to avoid 
the tuning of analysis parameters at startup and these 
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have recently been recognized and accepted also by 
other authors on how important neglecting predefined 
parameters [20]. 
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