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Abstract.  This article aims to provide a comprehensive review on the condition monitoring techniques of 
underground storage tanks (UST). Generally, the UST has long been a favourite toxic substance reservation 
apparatus, thanks to its large capacity and minimum floor space requirement. Recently, attention has been 
drawn to the safety risks of the complex cylindrical-shaped system and its surrounding environment due to 
contamination resulting from unwanted subsurface leakage. Studies on related countermeasures shows that 
numerous efforts have been focused on the damage remediation process and fault detection practice; 
however, it has also been observed that there are uncertainties in present technical complications involving 
the effectiveness of corrective actions and the robustness of condition monitoring techniques. As an 
alternative means to deliver spatial information on structural integrity, the feasibility of integrating non-
destructive evaluation (NDE) techniques with machine learning algorithms, on observing the degradation 
process of UST, so as to enhance condition monitoring competency, is discussed.          

1 Introduction   

Energy supply plays a crucial role by ensuring 
consumption sufficiency of a device over time to sustain 
an industry activity without disruption. Ranging from 
non-renewable coal, liquid fuel for transportation 
vehicles, to natural cooking gas, energy sources are 
categorized as hazardous substances, with flammability, 
corrosiveness, and chemical reactivity amongst the 
common traits. The mentioned toxic characteristics are 
also applied to industrial by-product such as radioactive 
waste and carbon dioxide  [1]. Therefore, strict 
material-handling management and operation monitoring 
assessment are usually employed to prevent waste 
leakage, which would further evolve into undesirable 
intolerant faults, performance underachievement, 
environmental pollution and periods of downtime. 

Underground storage tanks (UST) have been widely 
accepted for spacious energy supply reserves, refuelling 
and waste containments purposes. Typically found 
underneath petrol stations, laundry outlets and local 
households, the complex cylindrical-shaped containers 
are inevitably expose to contamination, corrosion and 
erosion during service periods [2-5]. Usually, the 
aforementioned deterioration signs focus on risk-
bounded areas, including welding joints, tank bottoms, 
manholes, pumps and piping systems as displayed in Fig. 
1 [6,7]; this deterioration arises due to harsh operating 
surroundings, metal and liquid reactions, specific 
material gravity difference of liquid and tank walls, 
fatigue, mismanagement and fault installation [8-10].  

Additionally, the underground operating nature of 
UST is a double-edged sword: it offers low surface area 
requirements but consequently induces a certain degree 
of monitoring difficulty. An enormous amount of 
research has been carried out since the norm of 
inspection practice such as the cathodic protection 
method [11] are acknowledged to be costly, labour-
demanding in long term, and inadequate in providing 
spatial information on the state of complex UST system 
as a whole [12]. The study area is comprised of 
remediation processes and fault detection monitoring 
techniques targeting hazardous contents in 
multidisciplinary approach. Further elaboration is 
presented in the section UST Condition Monitoring 
Techniques. 

Nonetheless, several unpleasant incidents including 
the Gulf of Mexico oil spill [13,14] and Fukushima 
nuclear plant leakage [15,16] have recently caused legal 
disputes, incurring additional costs and unpredictable 
technical situations. Furthermore, the uncertainties in the 
present aging equipment risk assessment have publically 
raised skepticism on environment safety. 

Adoption of an outdated or least rigorous condition 
monitoring technique at a hostile operating environment, 
together with heavy reliance on individual know-how 
and past experience amongst identified factors which 
contributes to undesirable events involving UST. 
Analysis of a total of 242 recorded UST damages lead to 
the conclusion that 30% of accident are preventable with 
quality maintenance and operations management [17]. It 
is believed there is rooms to improve existing
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Fig. 1. General Petrol UST and Refueling Facility at Petrol Station 
 

 

condition monitoring solutions for USTs after 
identifying the challenges and limitations. The viability 
of a product life cycle prediction and fault diagnosis 
model based on NDE techniques and machine learning 
algorithms will be tabulated in the Recommendations 
section. 

2 UST Condition Monitoring Techniques   

A variety of significant conventional monitoring 
techniques have been designed to cater for wide-range 
applications for different occasions. Notably, visual 
inspection performed by experienced personnel is 
suitable for preliminary analysis [18,19]. For ferrous and 
non-ferrous segments, oil and debris analysis is useful to 
detect any chips, leakage, or places where the coating 
may have detached [20-22]. By employing fundamental 
heat transfer theory, the thermography method screens 
structural temperature variation with respect to material 
properties and conductivity [23,24]. An on-line 
parameter tracking administration, namely Supervisory 
Control and Data Acquisition (SCADA) is specialized in 
wide coverage tribological monitoring [25,26]. Together 
with capacious data storage, SCADA’s centralized 

control system is capable of providing an extensive 
review of multiple equipment or spacious facilities over 
time. Vibration-based analysis yet another distinctive 
option due to its well-established high-speed component 
fingerprint pattern recognition and diagnosis [27,28]. 

Despite proven success for the above methodologies, 
they are relatively inconvenient to apply to UST because 
of UST’s restricted, difficult-to-reach underground 
environment characteristics. Also, due to the fact that an 
UST is a system influenced by multitudinal factors, 
straightforward conventional techniques would most 

likely underestimate the black box model. In addition, 
the low correlation between time-varying factors and 
relatively time-consuming filling-discharge cycle periods 
add to the tedious computation and slow response. 
Taking into account the static nature of components 
together with the numerous dynamic attributes of 
product such as the liquid volumetric flow rate, USTs are 
rather insensitive to motion-type monitoring. For these 
reasons, collective investigation into condition 
monitoring techniques has been performed to 
accommodate environmental hostility and decode the 
scarce available signals, both factors happening as a 
result of unresponsiveness from subsurface structures. 
The milestones and findings available in 
multidisciplinary studies will be described in a 
chronological order as below. 

2.1 UST Condition Monitoring Research 
Development  

Since last century, UST related condition monitoring 
research effort has been concentrates in several 
dimensions. For example, estimation of a risk-based 
parameter of a leaking tank was conducted by employing 
clean-up level approximation [29]. The transient 
behaviour of concentration output as described in an 
arbitrary-defined risk as time function is considered to be 
strongly subjective. A Fourier Transform infrared 
photacoustic spectroscopy analysis was introduced to 
probe UST nuclear waste [30]. In this case study, a 
convenient resolution on reactive waste detection with 
minimal hazardous pollutant handling was determined. 
The feasibility of utilizing commercial computational 
modelling methods in 2CO injection and containing 
process was compared under a test situation [31]. The
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capability of a list of software was discussed and 
improvement proposed. The Electrical Resistance 
Tomography (ERT) technique was deployed to conduct 
a UST leakage detection test [32]. To assist leakage 
examination, a set of evenly-distributed electrode sensor 
arrays generated visualization via periodic sampling of 
tank waste amounts. 

An interdependence of temperature changes between 
a tank wall, its surrounding, and the liquid inside was 
observed during an UST temperature-control simulation 
using Complex Finite Fourier Transform (CFFT) [33]. 
The UST thermal energy regulating model also implies 
system response is influenced by operating conditions. 
An online soil-venting system was studied to remedy 
petrol leakage [34]. Thorough information on leakage 
occurrence was recorded, particularly during refuelling 
activity; and the cost-effectiveness of moving towards 
zero-emission soil is reviewed. A reusable compound, 
namely HDTMA (hexadecyl-trimethylammonium)-
kaolin was introduced as an isolation material in case of 
contamination [35]. The hydraulic connectivity and 
ability to absorb petroleum chemical possessed by 
HDTMA-kaolin compound is comparable with a 
standard bentonite mixture.  

An event of UST floating roof damage was simulated 
by incurring liquid sloshing as a result of lengthy high 
seismic amplitude effects [36]. Aiming to resemble the 
aftermath of an earthquake, the damage prediction is 
enhanced by taking into account neighbouring 
sediments, deep basin structure and source distance of 
ground motion. An optic fibre mid-infrared filtering 
technique was applied to examine 2CO underground 
displacement and leakage monitoring [37]. 
Investigations has proven that it is practical to inspect 
gas admission and emission by referring to appropriate 
infrared characteristics: the wavelength range threshold, 
optical path compatibility, and optical fibre types. 

An UST design review based on extreme stress 
analysis was carried out in the wake of a collapsed roof 
incident [38]. A strain gauge experimental dataset was 
collected under various stress tabulation settings to 
numerically assess the impact of structure geometry and 
corrosion distribution. A similar tank stress experiment 
has recommended weld toe geometry reinforcement in 
order to reduce local stresses [39]. Meanwhile, it has 
been observed that non-destructive Acoustic Emission 
(AE) signal analysis is engaged with a vertical UST floor 
plate scanning application [40]. The online monitoring of 
defects, for instance corrosion and leakage has been 
well-received since inactive time is no longer required.  

In France, technology transfer from mining field to 
underground toxic gas constrained monitoring was 
implemented [41]. The following have proven to be 
efficient 2CO tracking options: a dynamic accumulation 
chamber located between soil and ambience for influx 
gas measurement; and an integrated gas sensor system 
gauging 2CO concentration at pit subsurface. The author 
emphasised that several gas parameters such as isotopic 
and composition influence the identification process. A 
type of optic fibre sensory array, namely Fibre Bragg 
Grating (FBG), was adopted in UST finite element 

model online condition monitoring [42]. The 
proportional relationship between strain and FBG’s 

wavelength variation reflects tank-bottom thickness loss 
caused by corrosion and wall vibration response.  

The Environmental Results Program (ERP) assistant 
tools have been proposed with the aim to reduce 
frequency of UST structural inspection [43]. While the 
plan concentrates on addressing the risk of water supply 
contamination, it is also found to be compliant to 
regulations and cost saving. Different types of tank wall 
material have been taken into consideration to avoid 
corrosion issue, for example the high tensile 
fibre/polymeric composite [44]; nevertheless, this 
substance is not suitable to develop as a tank wall 
material alternative due to moisture absorption. An 
organic palm-made insulator has demonstrated improved 
thermal insulation efficiency for the critical components 
of water tanks [45]; it could function as a thermal stress 
reliever under climate change stimulation.  

A multidimensional membrane sensor mechanism was 
established to monitor gas availability, soil temperature 
and building composition strain parameter [46]. To 
provide detailed 2CO storage surveillance, the sensor 
measurement was validated through field application. By 
exploiting 3-D Coupled Euler-Lagrange (CEL) 
simulation, material stress and liquid sloshing height was 
exhibited to be inversely proportional to liquid level and 
height-to-radius ratio [47]. In order to optimize water 
tank storage design, an extensive product life cycle 
assessment has been performed [48]. The major 
environmental factors were determined to be tank and 
containment material, specifically, tank positioning, 
geometry and volume setting. Utilizing the conductive 
nature of petrol contaminants, the Electrical Impedance 
Tomography (EIT) technique was used to project 
underground splitting area [49]. The responses from 
buried electrodes are visualized via acquisition of a local 
projective conductivity image method.  

A mobilized robot with an attached olfaction device 
was simulated to perform various tasks within a toxic 
enclosure [50]. Modelling results show that the four-
wheeled device was capable of collecting samples 
without any movement constraints; it is convenient to 
investigate any chemical reaction process between 
interior parts of UST and its content. Spatial temperature 
measurement of buried enclosures has been conducted 
using spiral shape ultrasonic guided waves (UGW) [51]. 
Compared to junction-based thermocouple, the piezo-
electric crystal sensors are preferred in flammability 
warning because they are more effective, robust and less 
expensive. 

2.2 Petrol and Hydrocarbons Detection 
Techniques  

On the other hand, prioritized consideration has been 
given to petrol exposure resulting from operational 
processes due to concerns of populous petrol stations in 
urban areas. Analytical evaluation suggests that release 
of petrol fuel in liquid-gaseous form happens during 
storage and transportation, together with harmful anti-
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knocking additives (benzene, lead, Methyl tertiary butyl 
ether (MTBE) and oxygenate) spreading into 
surrounding ground, water and open space. The open 
atmosphere measurement sampled at petrol stations 
indicates the existence of a high toxic mixture made up 
of benzene, formaldehyde, and hydrogen sulphide at a 
level higher than allowable limits [52]. Hence, the option 
of exploiting volatile hydrocarbon agent’s fused passive 

vapour in UST defect monitoring was considered [53]. It 
is worth mentioning that leakage detection rate is 
dependent on vapour concentration in this case. 

Further, the prospect of employing infused fuel 
oxygenate in groundwater motion tracing and gasoline 
contamination level was explored [54]. By referring to 
MTBE thermodynamic and dispersion data, the spill 
dissipation rate and biodeterioration of material was 
verified using 3-D inverse modelling. In other words, the 
effectiveness of remedial action on contamination was 
governed by the MTBE solubility rate in water source 
[55]. Additionally, the correlation between MTBE 
concentration, degradation in progress and loss of 
dilution charge over period was ascertained [56]. In 
Thailand, the volume of volatile fuel organic compounds 
(VFOC) at petrol station space areas were computed and 
visualized in an isoconcentration contour map to display 
the distribution of evaporated benzene and toluene [57]. 
As a result, a significant profile was observed at UST 
inlet points. 

By recruiting sulphate as the electron acceptor in a 
groundwater treatment experiment, toluene demonstrated 
a maximum reduction in percentage, subsequently 
followed by benzene and MTBE [58]. However, the 
effectiveness of hydrocarbon bioremediation lessens as 
microbial levels become reduced over time. The soil and 
groundwater sample data around a petrol station was 
evaluated using hydrocarbon indices and principal 
component analysis (PCA) method to determine the 
effect of related operational activity on the intermidate 
environment [59]. Correspondingly, the pollution rate 
due to UST fuel leakage was correlated to VFOC and 
diesel range organics (DRO) readings. The prospect of 
utilizing a half-life dissipation model in estimating 
MTBE (which remains in aquifer over time) has been 
explored [60]. The predicted gasoline oxygenate 
concentration rate via first order kinetics equation 
matched real-time field measures; hence, it is applicable 
for public water supply damage severity mapping. 

A novel carbon nanotube (CNT) sensor system was 
purposely designed with nanocomposite material to cater 
a violent underground surveillance [61]. The sensitivity 
of the aforementioned sensory mechanism is enhanced 
with the existence of time-varying parameters such as 
soil compost, humidity, pressure and temperature in 
output matrix. In order to deduce total release petrol 
hydrocarbons (TPHs) available in the vertical extent of 
soil, a 2-D grid view comprised of multiple plane was 
examined by polymerase chain reaction- denaturing 
gradient gel electrophoresis (PCR-DGGE) technique 
[62]. An analytical relationship between formations of 
microbial communities, leakage volume, texture and 
depth was defined based on field-test studies. An 
innovative in situ chemical oxidation (ISCO) method 

was acquired to investigate the progress of aqueous 
treatment after UST gasoline leakage effects [63]. 
Potassium ferrate )( 42FeOK has been proven to be a 
more stable oxidizing agent in degrading active 
hydrocarbon migration elements (BTEX and MTBE) 
over diverse medium compositions (pH and 
concentration), as compared to permanganate and 
hydrogen peroxide. 

A fuel leakage phase-change model was computed 
with respect to UST shape and surrounding area [64]. 
The contained liquid-gaseous proportion was projected 
into low explosion limit (LEL) indication to avoid fire 
accidents and eventually assist in efficient periodic 
corrective action selection. An electrical resistivity 
visualization technique was unveiled to target subsurface 
oil pollution spots around coastal cities in India [65]. 
This was realized by applying a set of multi-gas sensors 
to identify the hydrocarbon level in soil vapour 
sampling. Hydrocarbon spoil treatment outcomes has 
been compared extensively using land farming 
bioremediations in Nigeria [66]. Fertilizer was proven to 
be the most cost effective addition, over biochar, 
biosurfactant and other heterogeneous nutrient agents. 

2.3 Rule and Regulation Changes  

As unpredictability in UST leakage increases, in terms 
of occurrence and damage severity, more stringent 
guiding principles in installation, operation, maintenance 
and safety have been proposed, amended and 
implemented by the authorities and professional 
organizations. 

For example, The Environment Protection Agency 
(EPA) has updated a set of UST-related regulations 
which covers hardware reinforcement, increases the 
frequency of scheduled maintenance and requires the 
latest on-site certification for operators in charge [67]. In 
addition, the public has been motivated by the federal 
government of the United States to perform standardized 
monitoring practices revised by professional 
organizations. The imposed exemplar and guideline 
comprises the aspects of setting up, structural integrity 
assessment and health monitoring, operation and 
fulfilment activities, fault detection, corrosion protection 
methods and other general subjects. 

Meanwhile, renowned industry manufacturer The 
Welding Institute (TWI) in the UK has implemented a 
wall thickness measurement criterion for pressure vessel 
product suggested by American Petroleum Institute 
(API) [68]: operating instructions for apparatuses in an 
ignitable environment [69]; and a reformed guideline  for 
degrading steel products respective to the working 
environment [70]. Domestic standard regulations for 
USTs in Malaysia include: liquid storage steel tanks 
design specification [71]; an international guideline for 
welding procedures [72]; and an accredited welding 
technical qualification specifically for steel fusion [73]. 

Clearly, a series of proactive moves toward tightening 
up regulation lists serve as countermeasures in 
preventing and minimizing contamination problems, 
particularly against aging UST products. However, the 
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UST-associated guidelines mentioned above cover a 
wide area and has been revised in a periodic manner to 
be flexible according to modern technology trends and 
multiple regions; thus, it is recommended to comply 
when applicable. 

3 Challenges and Limitations   

To summarize, it can be deduced that substantial 
research with the aim to upgrade the UST condition 
monitoring model has been conducted. More 
specifically, the vast efforts incurred range from property 
extraction of tracking additives, auxiliary sensors, 
simulation modelling, product material research and 
design modification, process control, enforcement of a 
stricter standard compliance, multivariate statistical 
analyses, to matured technology transfer from proven 
case studies (Fig. 2). Evidently, the applications require 
a coherent collective field of knowledge with respect to 
the diverse physical form of contained material (Fig. 3), 
in order to overcome identified shortcomings in 
delivering sensitive inspection of USTs. 
 

 
Fig. 2.  UST Condition Monitoring Research Method 

Percentage 
 

 
Fig. 3.  UST Condition Monitoring Target Material Percentage 
 

Nonetheless, obviously the present research direction 
has an emphasis on contaminant remedial action and 

leakage detection (Figure 4). While remedy effectiveness 
remains in question, fault detection capability means that 
the condition monitoring process is capped at lower 
levels one and two [74,75]. Without the ability to 
perform fault severity calibration and predict a product’s 

lifespan, there remains insufficient information provided 
to understand the situation behind prior leakage, and it is 
too late if the damage is done. Furthermore, this 
statement is confirmed by the numerous health issues 
reported on petrol station assistants [57]; pollution 
prevention strategies opt for better cost-saving, energy 
conservation and health care measures [76] after a 
thorough hydrocarbon leakage evaluation. 
 

 
Fig. 4. UST Condition Monitoring Improvement Action 
Percentage 
 

Review on vibration structural health monitoring [77] 
encourages the exploration of signal response to utilize 
its fundamental statistical pattern recognition in 
developing advanced model- or non-model-based system 
identification. Analogous to vibration, a non-destructive 
evaluation (NDE) signal responds in an identical 
manner: the amplitude of waveform energy reflects the 
existence of abnormal events. Typically, statistical 
analysis is compatible with waveform interpretation due 
to its attribute’s simplicity. However, it is observed that 

the trade-off relationship between the complexity of 
condition monitoring model and its accuracy are non-
trivial. In general, simulation modelling supported by a 
combination of detailed theoretical background and 
mathematical settings will generate more precise 
performance, but it is computationally tedious. On the 
contrary, a plain, direct model could face a bottleneck 
when analysing complicated situation such as 
simultaneous monitoring and weighting of abundant 
signals. Comparatively, outlier detection can be achieved 
by extracting fundamental vibration features and 
applying it to techniques such as statistical process 
control (SPC) [78], adaptive template matching (ATM) 
[79], wavelet transform (WT) [80], or Fourier Transform 
[81], but the aforementioned methods are far away from 
mimicking reality and demand human supervision. 

Based on the above reasoning, the following research 
concentrates on the necessity and fulfilment of machine 
learning algorithms by making use of NDE signal-
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extracted features. By means of gaining sharp and 
retentive pattern-recognition memory, improvement is 
anticipated for the condition monitoring ability by 
developing a multi-fault classification model for USTs, 
labelling the severity scale and predicting the lifecycle of 
the product altogether. 

4 Recommendation   

4.1 Availability of NDE and its Advantages  

As mentioned in the previous section, several NDE 
techniques have been inquired to address drawbacks 
introduced by the current trend. NDE is favourable since 
it possesses numerous advantages over conventional 
practice in identifying structural integrity over time. 
Similar to x-ray scanning in the medical sector, NDE 
signals are intended to detect an anomaly and pinpoint 
its position within the effective scanning area, with 
unlimited number of testing trials. Interpretation of 
encoded NDE signals is always paramount, though 
laborious. Hence, practising suitable NDE techniques for 
a unique case study is essential in pursuance of potential 
ability, and it can be reflected from multiple factors: 
parameter setting, sensitivity, adaptability, compatibility, 
and ease of implementation. Because of the considerable 
numbers in the NDE list, only choices that fits the 
required criteria on paper will be discussed, including 
ultrasonic guided wave (UGW) and acoustic emission 
(AE). 

Ultrasonic guided wave technique is a branch of 
ultrasonic testing (UT) which release low frequency 
sound energy (50 kHz-200 kHz) mainly for cylindrical 
shape cross sectional and material characterization 
inspection purposes [82,83] and it has been extended to 
other complex shapes [84,85]. It is expert in long 
distance inspection owing to the capability of an induced 
stress wave to travel along the specimen’s boundary. 

Since it is an active pulse/echo method, the pulse emitter 
and receiver of an UGW are typically attached to a 
material surface alongside each other; waveform signals 
created by a set of electronic pulse-driven transducers 
embeds into specimen and propagates in perpendicular 
directions.  

When UGW eventually encounters discontinuity such 
as circumference variation, material properties and 
grains difference, propagating energy is reflected. The 
reflecting amplitude (A-scan) and shape (C-scan) 
express the extent of dissimilarities in size and 
orientation respectively; while the location of the 
reflector is measured from either frequency signal or 
time of flight (TOF). Nevertheless, the proficiency of 
UGW is slightly hindered by its own nature. Researchers 
has been aiming to overcome gaps concerning UGW’s 

signal intensity, which diminishes after endured severe 
travel distance due to attenuation activities [86,87]; and 
its insensitivity to axial anomaly, which appears to be 
coincide with the travel direction of signal [88]. 

Contrary to any other common NDE techniques, 
acoustic emission is well-known as a passive approach 
since it anticipates signal waves produced by specimens 

themselves, instead of putting effort into creating energy 
for feedback [89,90]. Fundamentally, under continuous, 
repetitive stress conditions (tensile, compressive, shear, 
bending and torsion), the mechanical properties of a 
specimen will experience alteration over time and 
breakdown when the force applied exceeds the 
sustainable limit. When failings such as deformation and 
fatigue arise, AE-encoding sensors concentrate on 
converting high-frequency acoustic stress waves (15 
kHz-300 kHz) as a result of local loaded elastic kinetic 
energy discharge by discontinuities, into amplified 
electronic signals. The preliminary AE waveform 
proportionally describes the size and speed of defects; 
with the help from initiative data processing, it is 
suitable to monitor changes of a mechanical loaded 
structure, locate and identify incurred damages. 
Secondary forces such as friction, which interfere in the 
signal-to-noise (SNR) ratio remain a doubt in AE 
implementation [91]. 

It is of profound importance to recognize that UGW 
and AE holds different characteristics yet are superior in 
their own ways. It has been observed that UGW is 
indicated in elongated inspection areas, complex shapes 
and uncompromising environments [92-96], while AE is 
more suited to dynamic and mechanical applications [97-
102]. That being said, practicing the above-mentioned 
NDE technique solely in UST monitoring is foreseen to 
be problematic due to individual distinctive features. For 
AE alone, inconsistency of mechanical stress applied on 
different UST body segments could lead to neglect of the 
upper segment, while UGW could overlook laminations 
and porosities, as well as uniform corrosion and erosion 
when considering negligible cross-sectional differences 
in range. 

For better evaluation efficiency, the signal fusion 
approach has been offered in the interest of a diverse 
interpretation perspective [103,104]. For USTs in 
particular, the signal fusion concept suggests that both 
AE and UGW signals be emitted from adjacent 
directions, merging to forge a mesh-like screening field 
in favour of blind spot minimization. Besides, it is 
obvious that raw NDE signals require comprehensive 
numerical review with regards to identifying anomalies 
symptoms of anomalies and elimination of false alarms 
in automated mode [105]. 

4.2 UST Condition Monitoring Model Package  

The NDE signal plays a vital role as input signal in 
the UST model evaluation which could be separated into 
three main intermediates: material screening, signal 
processing and machine learning fault classification 
(Figure 5). With UST as the target, NDE signals react to 
stress-strain tabulation, cross sectional dissimilarity, 
liquid level contents and the amount of tank bottom 
settlement during material screening process without 
injuring the product structure.  

The raw signals obtained from respective sensors 
mounted at appropriate locations carry little meaning 
without diagnosis from relevant signal processing 
algorithms. By applying noise reduction, feature 
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 Fig. 5.  Proposed UST Condition Monitoring Flow Chart 
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extraction, system identification, parameter estimation 
and filtering methods [106,107], the aim is to increase 
the SNR ratio and form a baseline mathematical equation 
to determine the relationship between signal response 
and product properties under various states. Other 
benefits consist of establishing strategic sensor 
placement to avoid bulky instruments and degraded 
performance caused by overfitting [108]; this reduces 
uncertainties, and provides an overview on both UST 
black box characteristics and cost optimization. 

Next, machine learning algorithms will be responsible 
for analysing the processed signal distribution 
representing the linear characteristic of extracted features 
via the pattern recognition mechanism [109]. By means 
of analytical and numerical reasoning, a machine 
learning algorithm tends to detect and memorize 
deviations as anomalous, classify anomaly type 
according to outlier properties and determine the degree 
of severity of a given state of affairs through baseline 
model comparison. The fitness of the supervised 
classifier will be appraised by testing the dataset 
revealed after training stage, using multi-fold cross-
validation to avoid bias [110]. The best performer with 
least forecast error will be obtained as predictor in 
integrated condition monitoring model. 

Practically, a predicting model functions under the 
influence of uncertainties appearing in the form of 
measurement noise, quality of extracted features and 
model design [111].  Future trends of machine learning 
lie in artificial intelligence (AI) agents cascaded with 
automated optimization or probabilistic functions. 
Numerous case study implies that AI’s use has been 

rewarding in NDE signal classification and prediction in 
terms of accuracy, sensitivity and automated system, 
with recursive Artificial Neural Network (ANN) [112], 
wavelet based Support Vector Machine (SVM) [113], 
Euclidean-SVM [114], Bayesian Belief Network trained 
‘statistical-physical’ and ‘hypothesis-generating’ model 

[115], wavelet decomposition- continuous hidden 
markov model (CHMM) integration [116] amongst 
modern proposed techniques. Though it already displays 
an outstanding yield, the AI classifier can still be 
improved by incorporating uncertain variables into 

deterministic model using stochastic estimation [117-
119]. 

5 Conclusion   

With the motivation to reduce the occasions of 
distasteful containment leakage, pollution and corrective 
action, a significant amount of review has been 
discussed with the motivation to reform the UST 
condition monitoring model. In response to needs, the 
NDE technique is considered to be a competitive option 
amongst condition monitoring techniques in terms of 
sensitivity, cost-effectiveness and ease of installation. In 
addition, the hypothetically UGW-AE signal fusion 
seems to be more promising compared to a single signal 
emission in delivering spatial information of an UST as a 
whole, while coordinating with difficult operating  
surroundings and product shape complexity. 
Furthermore, signal processing and machine learning 
algorithms are integrated into the condition monitoring 
model as tools to interpret the retrieved NDE input 
signal, and perform automated pattern recognition fault 
classification if any outlier is located.  

However, the study was conducted based on theory 
and experience from different applications, thus 
implementation on actual UST is foreseen to be effortful 
and challenging. This includes but is not limited to 
determining the location of sensors, establishing 
coherence between a pair of NDE signals and algorithm, 
SNR, signal feature extraction and selection, separation 
of genuine faults and false alarms, and classifier 
accuracy.  
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