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Abstract. Lamb waves, as one of the types of guided waves, are extensively 

used for inspecting large structures as well as for structure health monitoring 

applications. One of the biggest benefits of guided waves is their ability to 

travel over long distances without much attenuation. Lamb waves are often 

used for inspection of piping systems and similar geometries where the 

dimension in the third direction is significantly smaller than the other two. 

No wonder that the study of the interaction of Lamb waves with particular 

types of geometric discontinuities is a frequent topic of research. The main 

aim of the proposed paper is to present the findings related to the numerical 

study of the interaction between low-order Lamb wave modes and surface 

breaking crack oriented at different angles relative to the free surface. 

Keywords: Lamb wave, Surface breaking crack, Normal mode theory, 

Orthogonality relation 

1 Introduction  

Lamb waves are extensively used for inspecting large structures as well as for structure health 

monitoring (SHM) [1]. The main feature of Lamb waves is that they can exist only in 

geometries with a finite thickness such as plates, rods, or tubes [2]. Lamb waves have the 

property of being able to travel over long distances without much attenuation; therefore, an 

interaction of Lamb waves with particular types of geometric discontinuities has been an 

important topic of research in terms of development of experimental, numerical as well as 

semi-analytical approaches [3-6]. Particularly in the case of experimental methods, the 
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retrospective characterization of the present defect with regard to the dispersive nature of 

Lamb waves present a relatively complicated matter. The increasing number of Lamb modes 

in the structure helps us to increase the informative level of the eventually present 

discontinuity, but, at the same time, the analysis of experimental data in itself is more difficult 

[4, 7]. In order to be able to solve such inverse problem, i.e. the backward characterization 

of the defect based on the measured experimental data, it is necessary to utilize methods that 

allow the interaction of selected Lamb wave modes with particular types of discontinuities 

to be accurately predicted. For these purposes, it is possible to use approaches based on the 

incorporation of the finite element method [8], boundary element method [9], or available 

alternatives in the form of hybrid methods, such as the Semi Analytical Finite Element 

Method (SAFEM) [10], which is based on the discretization of the cross-section through the 

finite elements and subsequent use of the classical analytical solution for wave propagation 

in the chosen direction. The advantage of this method is the possibility to solve the wave 

propagation in waveguides with geometrically complicated cross-section including 

propagation in composite plates. 

An equally important group of methods are hybrid methods using a combination of finite 

or boundary element method and analytical approach, which is most often based on the 

principle of modal expansion and the orthogonal property of Lamb wave modes [11].  

A number of authors, however, have focused their efforts on the development of fully 

analytical models that would completely eliminate the utilization of the finite or boundary 

element method as the tool for determination of stress and displacement field in the vicinity 

of the discontinuity [1, 6].  

The main aim of the proposed paper is to perform a numerical study, which is focused on 

an interaction between the low-order Lamb wave modes and surface breaking crack with  

a constant projected depth, oriented in a wide range of angles relative to the free surface. The 

numerical analysis of the energy transmission and reflection coefficients identification is 

performed using a semi-analytical method [11], which incorporates both the normal mode 

expansion theory and the orthogonal property of Lamb wave modes. The input data are then 

the through-thickness displacement vector and stress tensor components, which are obtained 

using the finite element method (FEM) in front of and behind the discontinuity.  

2 Semi-Analytical method for energy scattering coefficients 
evaluation 

The semi-analytical model utilized for numerical study was published in 2006 by L. Moreau, 

M. Castaings, and B. Hosten [11]. The basis of the model is incorporation of the modal 

expansion technique and the orthogonal property of Lamb waves. Lamb modes are the 

solutions of the elasticity equation in case of uniform waveguide with free boundaries on 

both sides of the waveguide: 

𝜇 ∇𝟐 𝐮 + (𝜆 + 𝜇) 𝛁 (div 𝐮) = 𝜌 �̈�,  (1) 

where 𝜆 and 𝜇 denotes Lame constants, 𝜌 is density of the material, and �̈� denotes second 

time t derivate of displacement vector u.  

The solution forms a discrete spectrum of wavenumbers, which can be split into two parts 

according to the wave propagation direction (positive vs negative x axis) [6]. The important 

fact is that the individual Lamb modes, which can be treated as eigenfunctions, form  

a complete orthogonal basis [12]. Due to these assumptions, it is possible to apply the 

eigenfunctions expansion technique on the displacement vector 𝐮𝛼
𝑛  and the stress tensor �̿�𝛼

𝑛  

of the n-th Lamb wave mode: 
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𝐮𝛼
𝑛(𝑥, 𝑧) = 𝛼𝑛(𝑥)𝐮𝑛(𝑧) = 𝛼𝑛(𝑥) (

𝑢𝑛(𝑧)

𝑣𝑛(𝑧)
), (2) 

�̿�𝛼
𝑛(𝑥, 𝑧) = 𝛼𝑛(𝑥)�̿�𝑛(𝑧) = 𝛼𝑛(𝑥) [

𝜎𝑥
𝑛(𝑧) 𝜏𝑥𝑧

𝑛 (𝑧)

𝜏𝑥𝑧
𝑛 (𝑧) 𝜎𝑧

𝑛(𝑧)
], (3) 

where: 𝛼𝑛 is the complex amplitude related to n-th mode, 𝐮𝑛(𝑧) and �̿�𝑛(𝑧) are the

displacement vector and the stress tensor, respectively, which are a function of the z 

coordinate and 𝑢𝑛(𝑧), 𝑣𝑛(𝑧), 𝜎𝑥
𝑛(𝑧), 𝜎𝑧

𝑛(𝑧), and 𝜏𝑥𝑧
𝑛 (𝑧) are the displacement vector and

stress tensor components. It has to be also noted, that both the displacement vector and the 

stress tensor are a function of 𝑒𝒊(𝝎𝒕−𝑘𝒏𝑥) term, where 𝑘𝒏 is the wavenumber of n-th Lamb

wave mode and 𝜔 is angular frequency. 

The time-averaged power flow 𝑃𝐴𝑉𝑥
𝑛  for the n-th mode, which propagates in guide with

thickness th, can be expressed as follows: 

𝑃𝐴𝑉𝑥
𝑛  = 𝐑𝐞 [∫ −�̿�𝛼

𝑛
𝑡ℎ

0

�̇�𝛼
𝑛∗𝒊d𝑧], (4) 

where: 𝒊 denotes unit vector in the x direction, the * denotes complex conjugation, the 
.

denotes time derivative and 𝑡ℎ represents plate thickness for which apply: 𝑡ℎ = 2ℎ (see

Figure 1). After some manipulation and taking into account the assumption of plane strain 

condition equation (4) can be rewritten in the following form: 

𝑃𝐴𝑉𝑥
𝑛  = 𝛼𝑛𝛼𝑛

∗𝐑𝐞 [𝑖𝜔 ∫ (𝜎𝑥
𝑛𝑢𝑛∗ + 𝜏𝑥𝑧

𝑛 𝑣𝑛∗)
𝑡ℎ

0
d𝑧]. (5) 

According to the form of 𝑃𝐴𝑉𝑥
𝑛 , it would be favourable to normalize the stress tensor and

displacement vector components in order to express the power flow solely in terms of the 

complex amplitude 𝛼𝑛 [11]. Let us define the stress tensor and displacement vector in

modified form: 

�̃�𝛼
𝑛(𝑥, 𝑧) = 𝛼𝑛(𝑥)�̃�𝑛(𝑧) = 𝛼𝑛(𝑥) (

�̃�𝑛(𝑧)

�̃�𝑛(𝑧)
), (6) 

�̿̃�𝛼
𝑛(𝑥, 𝑧) = 𝛼𝑛(𝑥)�̿̃�𝑛(𝑧) = 𝛼𝑛(𝑥) [

�̃�𝑥
𝑛(𝑧) �̃�𝑥𝑧

𝑛 (𝑧)

�̃�𝑥𝑧
𝑛 (𝑧) �̃�𝑧

𝑛(𝑧)
], (7) 

where symbol �̃� expresses the normalization with use of 
1

√|𝑃𝐴𝑉𝑥
𝑛 |

term. After repeated 

substitution of Equation (6) and (7) into Equation (5), we will obtain a modified expression 

for power flow, which will be now solely dependent on the value of complex amplitude 𝛼𝑛:

𝑃𝐴𝑉𝑥
𝑛  = 𝛼𝑛𝛼𝑛

∗ = |𝛼𝑛|𝟐. (8) 

Suppose that the total wave field can be expressed as a linear combination of all, for a 

given f𝑡ℎparameter, existing Lamb wave modes where f is a frequency and 𝑡ℎ is plate

thickness: 

𝐮𝑆𝑈𝑀(𝑥, 𝑧) = ∑ 𝛼𝑛(𝑥)𝑁 �̃�𝑛(𝑧), (9) 
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𝛔𝑆𝑈𝑀(𝑥, 𝑧) = ∑ 𝛼𝑛(𝑥)𝑁 �̿̃�𝑛(𝑧). (10) 

One of the most important properties of Lamb waves is the orthogonality between two 

different modes. In literature, several orthogonality conditions that differ from one another 

to their intended use can be found. In this case, we will use the orthogonality condition 

published by Shkerdin and Glorieux [5]: 

∫ (�̃�𝑥
𝑛�̃�𝑚 + �̃�𝑥

𝑚�̃�𝑛 − �̃�𝑥𝑧
𝑛 �̃�𝑚 − �̃�𝑥𝑧

𝑚 �̃�𝑛)
𝑡ℎ

0

𝑑𝑧 = Λ𝑚𝑛𝛿𝑚𝑛 , (11) 

where 𝛿𝑚𝑛 is Kronecker symbol and Λ𝑚𝑛  is the result of the integral for 𝑚 ≠ 𝑛, which is

subsequently used for calculation of complex amplitude of the given mode. Based on the 

known through-thickness displacement and stress components, it is possible to rewrite 

Equation (11) into following form: 

∫ (�̃�𝑥
𝑛𝑢𝑆𝑈𝑀 + 𝜎𝑥 𝑆𝑈𝑀�̃�𝑛 − �̃�𝑥𝑧

𝑛 𝑣𝑆𝑈𝑀 − 𝜏𝑥𝑧 𝑆𝑈𝑀�̃�𝑛) 𝑑𝑧
𝑡ℎ

0

= Λ𝑛 . (12) 

from where we can calculate the scalar value of the integral. Individual components 𝑢𝑆𝑈𝑀,

𝜎𝑥 𝑆𝑈𝑀, 𝑣𝑆𝑈𝑀, 𝜏𝑥𝑧 𝑆𝑈𝑀 can be further replaced by Equations (9) and (10) in order to get a

modified version of Equation (12):  

∫ [�̃�𝑥
𝑛 ∑ 𝛼𝑛

𝑁

�̃�𝑛  + ∑ 𝛼𝑛

𝑁

�̃�𝑥
𝑛�̃�𝑛 − �̃�𝑥𝑧

𝑛 ∑ 𝛼𝑛

𝑁

�̃�𝑛 − ∑ 𝛼𝑛

𝑁

�̃�𝑥𝑧
𝑛 �̃�𝑛] 𝑑𝑧

𝑡ℎ

0

= Λ𝑛 . (13) 

From Eq. (13) the relation for complex amplitude can finally be derived: 

𝛼𝑛 = Λ𝑛 {2 ∫ [�̃�𝑥
𝑛

�̃�
𝑛

 − �̃�𝑥𝑧
𝑛

�̃�
𝑛]

𝑡ℎ

0

𝑑𝑧}

−1

  .  (14) 

After identification of complex amplitudes of incident, reflected and transmitted modes, it is 

possible to calculate the energy scattering coefficients according to the following relations: 

𝑘𝑟𝑒𝑓
𝑛 =

𝑃𝐴𝑉 𝑅𝐸𝐹
𝑛

𝑃𝐴𝑉 𝐼𝑁

=
|𝛼𝑛 𝑅𝐸𝐹 |2

|𝛼𝑛 𝐼𝑁|2
 ,   (15) 

𝑘𝑡𝑟𝑎𝑛𝑠
𝑛 =

𝑃𝐴𝑉 𝑇𝑅𝐴𝑁𝑆
𝑛

𝑃𝐴𝑉 𝐼𝑁

=
|𝛼𝑛 𝑇𝑅𝐴𝑁𝑆|2

|𝛼𝑛 𝐼𝑁|2
 ,  

(16) 

where 𝑃𝐴𝑉 𝐼𝑁
𝑛 , 𝑃𝐴𝑉 𝑅𝐸𝐹

𝑛 , 𝑃𝐴𝑉 𝑇𝑅𝐴𝑁𝑆
𝑛  is the power flow of incident, reflected, and transmitted 

n-th Lamb mode with corresponding complex amplitude 𝛼𝑛 𝐼𝑁, 𝛼𝑛 𝑅𝐸𝐹 , and 𝛼𝑛 𝑇𝑅𝐴𝑁𝑆. 

3 Numerical parametric study 

The finite element simulations were realized in the frequency domain in order to obtain the 

above-mentioned through-thickness displacements and stress distribution in front of and 

above the discontinuity. The subject of interest was a 3 mm thick aluminium plate (Young 

modulus E = 69 GPa, Poisson´s ratio 𝜈 = 0.34, density ρ = 2660 kg/m3), which contains 

a 0.1 mm thick surface breaking crack with the same value of crack root rounding. The crack 

orientation has been defined by inclination angle 𝛽 – see Figure 1, which varied within -70 
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and 70 degrees. The each parametric study has been performed with a 0.5 degree step. A total 

of nine parametric studies were performed and differed in the excitation frequency of the 

incident A0 Lamb wave mode as well as in the projected depth H of the surface breaking 

crack. For clarity, all realized variants of the parametric studies are listed in Table 1. 

Fig. 1. Free plate including the surface breaking crack 

Table 1. Realized variants of the parametric studies 

Parametric 

study No. 

[-] 

Projected depth H in 

percent of the plate 

thickness  

[%] 

Excitation frequency 

of incident A0 mode 

[kHz] 

Range of angle 

β 

[o] 

Angle step 

[o] 

1 25 100 -70 to 70 0.5 

2 50 100 -70 to 70 0.5 

3 75 100 -70 to 70 0.5 

4 50 200 -70÷70 0.5 

5 50 300 -70÷70 0.5 

6 50 400 -70÷70 0.5 

7 25 500 -70÷70 0.5 

8 50 500 -70÷70 0.5 

9 75 500 -70÷70 0.5 

The generation of the incident mode has been performed using locally applied excitation 

of normal force 𝐹(𝑥, 𝑓) with a Gaussian-windowed spatial distribution by the following 

function [11]: 

𝐹(𝑥, 𝑓) = 𝐹0e−𝑖𝑘𝑥e
𝐴(𝑥−𝑥0)2

𝐵2 , (17) 

where: 𝐹0 (set at 100 N) represents the amplitude of the excitation force, 𝑘 is the wavenumber,

𝑥 refers to the spatial coordinate, 𝐴 (set at 30 mm) defines the width of the excitation zone, 

𝐵 (set at 60 mm) defines its length and x0 is the centre of the excitation interval for which 

apply: x0 = 0.5(x2-x1) – see Figure 2. The wavenumber of the incident A0 mode is a function 

of material properties, thickness of the plate as well as a function of the wave frequency. 

Figure 2 displays the scheme of the finite element model including the places where the 

through-thickness displacements and stress components were monitored.  

Fig. 2. Scheme of the finite element model for obtaining through-thickness displacements and stress 

components 

h 

h 
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The PML abbreviation expresses the Perfectly Matched Layer property, which is an 

artificial absorbing layer option available in the COMSOL software. The PML property 

enables us to minimize the dimensions of the model including the elimination of the back-

wall reflection at the same time. The results from each computed parametric study were then 

post-processed in order to extract the required through-thickness displacements and stress 

components at monitored cross section segments (see Figure 2). The extracted data files were 

subsequently imported into the Matlab software environment where a semi-analytical 

approach has been utilized in order to calculate the energy scattering coefficients. 

4 Results and discussion 

Figures 3 and 4 display the functional dependencies between the reflection and transmission 

coefficients of the A0 Lamb wave mode and inclination angle β for the five selected 

excitation frequencies of the incident A0 mode. It has to be noted that the results displayed 

in Figures 3 and 4 are for the case when the crack projected depth is equal to 50% of the plate 

thickness. We can notice that with the increased excitation frequency there is a substantial 

decrease of the interval width with the A0 energy reflection coefficient lower than 20% (see 

Figure 3). Thus, if we use a test methodology based on the evaluation of the reflected fraction 

of the A0 mode, the sensitivity of this mode in the form of change of the reflected energy due 

to the presence of the defect will not be satisfactory, especially within the -60° to 60° interval 

of inclination angle β and the fth value equal to 0.3 MHz∙mm. 

Fig. 3. Energy reflection coefficients of the A0 Lamb wave mode for given interval of inclination angle 

β as the function of the excitation frequency of the incident A0 wave (H = 50% of plate thickness) 

However, with the increased fth value, this interval is reduced and for fth = 1.5 MHz∙mm we 

are already achieving satisfactory results, especially in the -10° to 30° angle range. Somewhat 

more positive results are obtained in the case of monitoring the transmitted fraction of the A0 

mode (see Figure 4) where we register a very satisfying sensitivity on a relatively wide range 

of inclination angle β for the lowest value of the fth parameter. However, with the increasing 

value of the excitation frequency we are gradually losing the advantage, and the situation will 

improve to some extent with fth parameter larger than 1.2 MHz∙mm. A similar trend occurs 

when we monitor the transmitted or reflected fraction of the S0 mode (Figures 5 and 6) but 

with a much worse prognosis. In order to effectively cover the widest possible interval of 

inclination angle β with sufficient sensitivity to detect the defect present in the given 

configuration, it is therefore necessary to apply combined monitoring of both, the transmitted 

and reflected fractions of the A0/S0 modes. For more detailed analysis of the behaviour of 

each of the fundamental Lamb wave modes, numerical studies with H parameter equal to 
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25% and 75% have been performed. Figures 7 and 8 show the transmission and reflection 

coefficients of both Lamb wave modes as the function of inclination angle β and the projected 

depth as the function of the H parameter.  

Fig. 4. Energy transmission coefficients of the A0 Lamb wave mode for the given interval of inclination 

angle β as the function of excitation frequency of the incident A0 wave (H = 50% of plate thickness) 

Fig. 5. Energy reflection coefficients of the S0 Lamb wave mode for the given interval of inclination 

angle β as the function of excitation frequency of the incident A0 wave (H = 50% of plate thickness) 

The presented results show that especially for ft = 0.3 MHz∙mm the sensitivity of both 

fundamental modes to the present defect of the given configuration is very low. With the 

excitation frequency of 500 kHz we will, however, obtain diametrically different results 

(Figures 9 and 10) in which the A0 Lamb wave mode is an advantage. In order to find out in 

more detail the nature of the behaviour of the individual modes, the visualization of the 

structure of both fundamental modes for excitation frequencies of 100 kHz and 500 kHz was 

performed – see Figures 11 and 12. The analysis shows that the rate of sensitivity related to 

the discontinuity detection of a given configuration is basically influenced by two main 

factors - the wave structure including its associated wavelength. In the case of low values of 

the fth parameter (0,3 MHz∙mm), we are facing diametrically different structures of the A0 

and S0 modes. While the A0 mode with the excitation frequency 100 kHz has a wavelength 

of less than 16 millimeters, including the dominant displacement in the transversal direction, 

the wavelength of the S0 mode at the same frequency is almost 3.5 times higher with 

dominant displacement in the longitudinal direction.  
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Fig. 6. Energy transmission coefficients of the S0 Lamb wave mode for the given interval of inclination 

angle β as the function of the excitation frequency of incident A0 wave (H = 50% of plate thickness) 

Fig. 7. Energy transmission coefficients of the A0 Lamb wave mode for the given interval of inclination 

angle β as the function of projected crack height H (25%, 50% and 75% of plate thickness). Excitation 

frequency of A0 mode f = 100 kHz 

If we raise the frequency five times, i.e. to the value of 500 kHz, the wavelength of the 

S0 mode will reduce approximately five times, while the A0 wavelength is only three times 

lower due to a more pronounced dispersion effect. Due to much closer values of wavelengths 

compared to the projected dimensions of the defect in the x and z axes, we will register 

a generally higher sensitivity of both modes to the change of inclination angle β as well as 

the presence of the defect itself. The presented results show, that it is important to carry out 

a comprehensive analysis of the individual energy scattering coefficients, including the 

information related to the wave structure, which are an indispensable tool for the design of 

the inspection methodology in the technical practice. 
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Fig. 8. Energy transmission coefficients of the S0 Lamb wave mode for the given interval of inclination 

angle β as the function of projected crack height H (25%, 50% and 75% of plate thickness). Excitation 

frequency of A0 mode f = 100 kHz 

Fig. 9. Energy transmission coefficients of A0 Lamb wave mode for the given interval of inclination 

angle β as the function of projected crack height H (25, 50 and 75% of plate thickness). Excitation 

frequency of A0 mode f = 500 kHz 

Fig. 10. Energy transmission coefficients of the S0 Lamb wave mode for the given interval of 

inclination angle β as the function of projected crack height H (25%, 50% and 75% of plate thickness). 

Excitation frequency of A0 mode f = 500 kHz 
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Fig. 11. Normalized displacements of A0 mode (left) and S0 mode (right), f = 100 kHz, f.t = 0.3 Hz.mm 

Fig. 12. Normalized displacements of A0 mode (left) and S0 mode (right), f = 500 kHz, 

f.t = 1.5 MHz.mm

5 Conclusion 

The main aim of the presented paper was to perform a detailed numerical study related to the 

usability of fundamental A0 and S0 Lamb wave modes for detection of specified 

discontinuity type, namely surface breaking cracks of different projected depths. The study 

has revealed completely different behaviour of A0 and S0 modes in terms of the interaction 

with the above-mentioned discontinuity type. It has been shown that the decisive influence 

on detection sensitivity basically has two aspects – the structure of the wave in terms of the 

ration between displacements in the x and z axes and the wavelength of the wave. The 

information obtained so far will be subsequently applied to a series of planned experimental 

studies with the aim to verify numerical results on the cases of real discontinuities. 

This work was supported by Specific Research (SP2018/63) and by The Ministry of Education, Youth 

and Sports from the National Programme of Sustainability II (LQ1602). The support is acknowledged. 
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