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Abstract. Distributed Control Systems (DCSs) often perform complex and critical operations in the 

industry. To make work of operators easier, they are often equipped with Human-Machine Interface 

(HMI) panels that allow observing the current state of a process, as well as adjusting the configuration. 

However, when visualisation consists of several displays with many controls and a high number of 

calculations, it is possible to encounter some performance-related problems due to communication 

between a controller and the HMI panel. This problem can be limited by arranging global variables in 

the way that decreases the number of requests or transmitted data. The paper shows an approach of 

solving this problem, based on a set of SysML models that specify visualisation displays and auxiliary 

programs, together with involved global variables. The proposed approach can be expanded to operate 

as a part of a comprehensive methodology of modelling, implementation, visualisation, and testing of a 

DCS. 

1 Introduction  

Nowadays, Human-Machine Interface (HMI) panels are 

commonly used in the industry. They visualise a control 

process state and facilitate parametrisation adjustment. A 

screen layout is based on graphical primitives, either 

simple (e.g., circle, line) or complex ones (e.g., chart, 

dial graph). Their current appearance (e.g., colour, size, 

displayed text) depends on actual values of connected 

variables. Such values are read from a remote controller. 

Thus, efficient communication is crucial for proper 

operation of the system. 

Typically, an industrial communication network [1] 

is based on a fieldbus [2] and one of the field protocols 

defined in the IEC 61158 standard [3]. Non-standard 

approaches, such as using Hypertext Transfer Protocol 

(HTTP) instead of specialised field protocol, have been 

also described [4], but they are rarely used in practice. 

Configuration of communication involves defining 

multiple communication tasks to exchange all visualised 

variables. In some cases, depending on the 

communication protocol and variables, data can be 

exchanged in different ways, which influence 

communication performance. Such an impact is 

discussed in the paper. To facilitate optimal 

configuration of the communication channel, an 

approach based on the Model-Driven Development 

(MDD) paradigm and SysML diagrams is introduced in 

the following sections. 

The proposed approach could be also integrated with 

the CPDev engineering environment [5] to apply it for 

real industrial systems. CPDev is suitable for PLC 

programming in languages defined in the IEC 61131-3 

[6] standard. One of its functionalities covers designing 

of graphical HMI interfaces in a similar way to 

developing control programs, using the common 

environment [7]. Therefore, mutual connections between 

control program and visualisation are closer as both parts 

are developed together, rather than separately. 

The paper is organised as follows. The next section 

presents information about related work, especially 

application of models during control software 

development process. Then, an overall concept of the 

introduced approach is discussed. Such a topic is 

detailed in two following sections. First, proposed 

SysML models are described, then possible 

optimisations of variable arrangement are briefly 

discussed. The paper is concluded in Sec. 6. 

2 Related Work 

The Model-Driven Development (MDD) [8] is a 

commonly used paradigm to improve software quality. 

Such an approach increases a level of abstraction while 

designing system architecture. The models, created in 

early stages of development process, show various 

aspects of the system and can be used for automatic or 

semi-automatic generation of source code or 

configuration, for testing purposes, as well as for 

performance analysis. Other paradigms related to 
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modelling have been also described in the literature. 

Among them, Model Driven Architecture (MDA) [9, 

10], Model Driven Engineering (MDE) [11, 12], and 

Model Based Testing (MBT) [13] seem to be common.  

Models can be created in different languages, either 

formal (e.g., various classes of Petri Nets, including 

Hierarchical Timed Coloured Petri Nets [14], RTCP 

Nets [15], or Fuzzy Petri Nets [16]), or semi-formal 

ones. The latter approach typically uses Unified 

Modelling Language (UML) [17] or Systems Modelling 

Language (SysML) [18]. SysML is based on UML and 

provides nine types of diagrams for modelling behaviour 

(Activity, Sequence, State Machine, and Use Case 

Diagrams), requirements (Requirement Diagram), and 

structure of the system (Block Definition, Internal Block, 

Parametric, and Package Diagrams). 

The MDD paradigm, based on SysML or UML 

diagrams, can be also applied during development of 

industrial control software. Some of mentioned 

approaches are directly related to the communication 

subsystem, whereas others are dedicated to other parts, 

e.g., visualisation or control. The application of SysML 

diagrams for modelling of an IEC 61131-3 software has 

been presented in [19]. Another approach, including the 

Round-Trip Engineering (RTE) concept and partial 

generation of the source code based on SysML diagrams 

has been described in [20]. SysML-AT (SysML for 

automation), a specialised SysML language profile that 

allows automated software generation for run-time 

environments conforming to IEC 61131-3, has been 

described in [21, 22]. SysML can be also applied for 

modelling of a distributed manufacturing control system 

[23], developed according to the IEC 61499 [24] 

standard. Application of the UML diagrams for 

industrial system modelling has been presented in [25]. 

Automatic generation of software adapters source code 

for communication in digital home environment, based 

on templates and a SysML model of the system, has 

been described in [26]. The methodology dedicated for 

SysML modelling of functional and non-functional 

requirements of the IEC 61131-3 control software, such 

as behaviour of Program Organisation Units (POUs), 

performance requirements for POU execution and 

communication between devices in DCSs, as well as 

expected operation of HMI panels has been introduced in 

[27]. 

The communication in DCS can utilise different 

paradigms of access to the communication link, among 

them master-slave, producer-distributor-consumer, and 

token passing are the most common [28]. All of them are 

based on the Time Division Multiplexing (TDM) 

scheme. Alternative Frequency Division Multiplexing 

(FDM) method has been also discussed [29], but it was 

not adopted in practice. A scenario of data exchanges in 

such paradigms, as well as communication subsystem 

with an industrial protocol, can be also modelled in 

SysML. Such approaches have been described for token-

passing [30], as well as for master-slave including some 

tests of communication performance [31]. The 

methodology for SysML-based tests in DCSs has been 

further developed and described in [32]. 

3 Overall Concept 

DCSs are often equipped with HMI panels to present the 

current state of the process, as well as to adjust its 

configuration according to the current needs or 

preferences of the operator. Of course, visualisation 

involves presentation of controls which design depends 

on the current value of variables. As presented in Fig. 1, 

the visualisation part (shown on the right) consists of 

displays, including only one that is currently active 

(Display #1 in the example). Each display contains 

controls (e.g., labels or dial graphs), configurable using 

their parameters, such as a background colour or a 

current value. Of course, it is possible not only to use 

fixed values as values of parameters, but also current 

values of global variables (according to the IEC 61131-3 

standard, global variables can be addressed from all 

POUs to facilitate exchange of data). In such a case, the 

display is automatically refreshed as soon as the 

associated value has changed. In the example, shown in 

Fig. 1, the first variable (Variable #1) is assigned to 

some parameters of controls in two displays, namely 

Display #1 and #2, Variable #5 is used by two controls 

in Display #3, while Variable #3 is used in the control 

programs, not in the visualisation part. 

 

Fig. 1. Overall concept of proposed solution. 

One of the important topics in this area is 

communication between the controller and the HMI part 

to read data of necessary variables in the way that 

minimizes the delays. In some common industrial 

master-slave protocols (e.g., Modbus) it is possible to 

read in one communication transaction not only a single 

register, but a block of variables. Therefore, multiple 

variables for HMI visualisation can be read together. 

However, such an approach is possible only if addresses 

of variables are close to each other. If the variables are 

dispersed over the whole address space, each of them 

must be read separately. Sometimes several dispersed 

variables may be grouped in a named list and read 

together, but many industrial protocols do not implement 

such a functionality. Thus, even an order of global 

variables definition could have a significant impact on 

performance. For this reason, it is the interesting 

research problem to arrange global variables in the way 

that improves performance. 

To make the proposed approach easy to use in the 

real-world industrial scenarios, the dedicated process has 

been proposed, as shown in Fig. 2. At the beginning, the 

designer prepares a set of SysML diagrams to model the 

visualisation part, namely display configurations, layouts 
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of controls, transitions between displays, as well as 

visualisation programs that make it possible to prepare 

values of global variables in the form suitable for 

presentation on the visualisation displays. Then, such 

models can be used to automatically or semi-

automatically generate visualisation displays and 

programs, which should be adjusted by an engineer. 

What is more, the SysML models are used to adjust 

configuration of global variables, defined in the DCS, by 

correcting their addresses to improve performance of 

communication-related tasks of the visualisation part. 

 

Fig. 2. Process supported by the proposed solution. 

By using the proposed approach together with the 

supporting process, it is possible to eliminate the 

necessity of adjusting global variables configuration 

directly by the engineer. Such a task, quite complicated 

in the case of advanced and comprehensive visualisation, 

could be performed automatically and adjusted each time 

when the visualisation part is modified, e.g., by adding 

new controls to a display and assigning some global 

variables to its parameters. 

What is more, the described process can be further 

expanded by tests that check whether various parts of the 

projects, including visualisation, are consistent with the 

requirements. There are various possibilities of 

achieving this goal, such as using the dedicated test 

definition language [33]. 

4 SysML-based Modelling 

The first stage of the proposed process is creation of a 

few models in SysML. The described approach is a part 

of the overall modelling methodology, supporting also 

the visualisation area, which allows using the following 

diagrams: 

 Block Definition Diagrams (BDDs) for displays, 

 Block Definition Diagrams (BDDs) for programs, 

 Internal Block Diagrams (IBDs) for layouts of 

displays, 

 State Machine Diagrams (STMs) for transitions 

between displays. 

However, this paper focuses only on adjusting global 

variables configuration and – therefore – only BDDs are 

used, namely for modelling of visualisation displays and 

programs. It is worth noting that models of displays are 

grouped in the HMI Displays package, while 

programs – in HMI Programs. 

4.1 Displays 

Each display, available in the visualisation part of the 

system, is modelled on a separate BDD, as presented in 

Fig. 3. Such a diagram has a name (marked as bold 

NAME) the same as the name of the display and is in the 

HMI Displays package. The diagram contains only 

one block, namely «hmiDisplay» with the name equal to 

VD_ followed by the display name. 

 

Fig. 3. Model of the visualisation display. 

The «hmiDisplay» block can contain proxy flow 

ports that indicate which global variables are used as 

input parameters for controls on the display or which are 

used to save values returned as output parameters from 

controls. This bit of information is crucial for the 

approach, described in this paper, because is used to 

check relationships between global variables and 

displays. 

What is more, the «hmiDisplay» block contains three 

additional compartments. The first (i.e., parts) 

specifies controls that are placed on the diagram, in the 

form INSTANCE_NAME : CONTROL_NAME. For 

example, if the display contains a button and a dial 

graph, the parts compartment contains two entries, 

namely BTN_START : BUTTON and DIAL : 

DIAL_GRAPH. 

The other compartment (marked as 

«hmiDisplay») configures basic data of the display, 

namely its width (WIDTH) and height (HEIGHT) in 

pixels. Such piece of information is used while 

generating the initial visualisation to set proper 

dimensions. 

The last compartment (i.e., allocatedFrom) 

contains references to other modelling elements, such as 

an activity used on the STM regarding transitions 

between displays («activity» VDA_NAME) and 

additional auxiliary visualisation program 

(«hmiProgram» VDP_NAME) that prepares data in a 

form suitable for presentation on the display. Of course, 

such references are not mandatory. 

4.2 Programs 

Apart from modelling displays, it is also possible to 

model auxiliary visualisation programs. Their role is 

important, because they allow adjusting values of global 

variables to a form that is suitable for presentation on the 

display. For example, they can be used to convert a 

Boolean variable into an index of the colour. 

The model of the visualisation program is created on 

the BDD diagram, as shown in Fig. 4 and is quite similar 

to the previously described model of the display. In this 

case, each visualisation program is modelled on a 

separate diagram, in the HMI Programs package, with 

a name equal to the name of the display. 

The diagram contains only one block, namely 

«hmiProgram», which name is the same as the 
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display, preceded by VDP_, which stands for 

Visualisation Display Program. The block contains 

additional stereotype that specifies the language used for 

implementation of the program from the languages 

supported by the IEC 61131-3 standard, either textual, 

graphical, or mixed. The first group consists of ST 

(Structured Text, «st») and IL (Instruction List, «il»). 

The graphical languages are FBD (Function Block 

Diagram, «fbd»), LD (Ladder Diagram, «ld»), while 

SFC (Sequential Function Chart, «sfc») is mixed. 

 

Fig. 4. Model of the visualisation auxiliary program. 

The «hmiProgram» block can also contain proxy 

flow ports, shown on its both sides. Flow ports located 

on the left indicate global variables that are read by the 

visualisation program, while ones presented on the right-

side variables, which are written by the program. Such 

configuration performs important role for the approach 

described in the paper, because global variables used by 

the program associated with the given display, should be 

read in each cycle when the display is presented to the 

user. 

5 Optimisation of Global Variables 
Allocation 

It has been mentioned that in some cases addresses of 

global variables, exchanged between the controller and 

the HMI, may have impact on communication 

performance. Such an issue is discussed in this section. 

Typically, the HMI panel periodically reads the 

variables that are necessary for visualisation from the 

controller. Usually, only the variables which are 

visualised on the current screen are read. However, such 

variables can be read in several ways. For brevity, the 

paper focuses on the commonly used industrial master-

slave protocol, namely Modbus. However, similar issues 

can be found in other protocols, as well. Each of data 

exchange transactions requires a pair of messages (i.e., 

request and response) to be sent through the network. A 

master device (HMI) sends a request, asking a controller 

about values of the variables. The controller replies.  

Unfortunately, in many cases such a reply cannot be 

generated immediately. The controller must decode the 

request and prepare an answer. Moreover, the controller 

cyclically executes a control program and, in some cases, 

reading of the variables must be delayed till the end of 

the current control loop, to ensure consistency of the 

values. Thus, it is usually better to read as many 

variables as possible in one request. Unfortunately, the 

Modbus protocol does not allow reading of two or more 

variables which are not close to each other. A single 

Modbus request includes the address of the first variable 

and the number of consecutive registers (variables) to 

read. Thus, reading of all visualised variables at once is 

possible only if these variables are grouped together, as 

seen in Fig. 5. 

It is worth noting that in some cases, when required 

variables are separated by a few other variables (which 

are not necessary for visualisation), it is also better to 

read them as well, and discard, just to make possible 

reading of multiple variables in one transaction. The 

additional time required for transmission of redundant 

variables will be negligible in comparison to the delay 

involved in reading of the variables in multiple separate 

queries. Of course, it depends on the number of such 

redundant variables, transmission speed, message 

processing delay in the controller, etc., and can be 

calculated in a case. 

 

Fig. 5. Influence of variable arrangement on communication 

tasks. 

Another example, where transmission of a single 

block with some redundant data may be faster than a few 

separate queries is related to the Modbus data types. In 

Modbus it is possible to use four different functions for 

reading a variable, depending on a variable type, namely 

Read Coils (FC1), Read Discrete Inputs (FC2), Read 

Holding Registers (FC3), and Read Input Registers 

(FC4). The first two read binary variables, whereas the 

other two operate on 16-bit registers. However, in some 

controllers it is also possible to read binary variable as a 

16-bit register, where 15 most significant bits are zeros 

and only the least significant bit is informative. Such a 

possibility seems to be slower than using the dedicated 

binary functions. However, in some cases it can decrease 

the number of exchanged bytes and accelerate 

transmission.  For example, if such a binary variable, 

read as a 16-bit long register, adjoins block of the 

registers which are already read, reading it in the same 

transaction will require transmitting of two bytes more, 

whereas reading it in separate transaction, using FC1 

function will require eight bytes of the request (station 

address, function code, variable address – 2B, number of 

variables – 2B, CRC – 2B) and six of the response 

(station address, function code, number of bytes, variable 

value, CRC – 2B). 

The model of displays can be used to detect the 

variables which are necessary for visualisation and 

should be possibly read together. Thus, the 

communication delay during different scenarios of data 

exchange can be calculated. Then, an optimal 

arrangement of the variables in the controller can be 

suggested for an engineer or even automatically applied 

in the control program. Therefore, a negative impact on 
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performance of communication with HMI can be 

minimized. 

6 Summary 

The communication performance has an important role 

in DCSs. In some cases, the communication overhead 

can be greatly reduced by slight changes in arrangement 

of the transmitted variables. To facilitate an early 

detection of the necessity of such changes, related to the 

communication between an HMI panel and a controller, 

the approach based on the SysML diagrams and the 

MDD paradigm has been proposed. 

Such an approach can be even further expanded to 

operate as a part of the comprehensive methodology of 

modelling, implementation, visualisation, and testing of 

a DCS. What is more, it could be integrated with the 

CPDev engineering environment, as well as its various 

parts, including the CPModel modelling tool. The 

planned future work includes incorporation of the 

described approach into the Round-Trip Engineering 

(RTE) methodology [20] to automate introducing 

changes in the source code related to addresses of the 

variables. 
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