MATEC Web of Conferences 226, 02024 (2018) https://doi.org/10.1051/matecconf/201822602024
DTS-2018

Development of software monitoring module for
multi-angle electric impedance tomography
method research

Grayr K. Aleksanyan®, Ivan D. Shcherbakov, Artem I. Kucher, Andrey V. Sulyz

Department of Information and Measuring Systems and Technologies, SRSPU (NPI), 346428
Novocherkassk, Russia

Abstract. This paper describes the experience of software development
for multi-angle electrical impedance tomography. The relevance and
necessity of an architecture for this kind of software product creating is
considered, requirements for reliability and fault tolerance are defined. The
choice of the architectural model has been made, design patterns have also
been chosen taking into account the prospective scenario of using the
developed software, their advantages are shown too. The most important
attributes of software quality are described, which should implement the
developed software product. The considered attributes of quality are
projected on specific modules of the developed software. The architectural
models and templates chosen during design are described, their advantages
and disadvantages are considered. Support issues for the software
developed by the cross-platform are discussed, and the possibility of
working in various operating systems is demonstrated.

1 Introduction

Within the framework of multi-angle electric impedance tomography (MEIT) problems,
software (software) has been developed to interact with the EIT device. The developed
software is a desktop application running on Windows and Linux platforms, suitable for use
in 2D and 3D electrical impedance tomography[1-3].

Two-dimensional electrical impedance tomography, in the context of software, should
realize the possibility of receiving one-belt measurement data from the EIT device and
visualizing the data, should be presented as a 2D image[4].

Three-dimensional electrical impedance tomography, in the context of software, should
realize the possibility of receiving measurement data of an indeterminate number of belts
from the EIT device and visualization of the data, should be represented as a (3D) image in
several variations[5].

A desktop application is a client software. The application is installed on the user's
workstation and runs locally, or it is launched remotely. The EIT software assumes the
functioning of a system that continuously receives data from the EIT device, analyzes the

* Corresponding author: graer@yandex.ru

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative
Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

MATEC Web of Conferences 226, 02024 (2018) https://doi.org/10.1051/matecconf/201822602024
DTS-2018

data received and displays the result in the application window in 2D or 3D format. The
diagram of the UML deployment is shown in Fig. 1.

Personal Computer EIT Device

<<USB>>
EIT Software.jargj

Fig.1. The UML deployment diagram.

At the planning stage, the quality attributes that are required to be implemented in the
EIT software are highlighted [6]:

- scalability - the degree of simplicity of effective and rational change of the product or
system without adding defects and reducing the quality of the product;

- flexibility - the extent to which a product or system can be used with efficiency,
efficiency, freedom from risk and in accordance with requirements in circumstances that go
beyond what was originally specified in the requirements;

- portability, mobility - the degree of simplicity of efficient and rational transfer of the
system, product or component from one environment (hardware, software, operating
conditions or conditions of use) to another;

- fault tolerance - the ability of the system, product or component to operate as intended,
despite the presence of software or hardware defects.

2 Choosing a software architecture

Based on the requirements, the software architecture [6-8] was developed, a single-level
(monolithic) architectural model was chosen [9]. A widespread problem of this model is
low scalability. [10]

To split the application into components, the Model-View-Controller (MVC) design
pattern is chosen, which provides separation of business rules, user interface and control
logic [11].

The MVC separates the view from the model, establishing a "subscription / notification"
protocol between them. The view must ensure that the external view reflects the state of the
model. With each change of internal data, the model notifies all its dependent types, as a
result of which the view updates itself. This approach allows you to attach several types to
one model, thus providing different views. You can create a new view without overwriting
the model. The scheme of the MVC template is shown in Figure 2.

Action Update

Controller

View - Model
Update Notify

Fig. 2. The scheme of the MVC design pattern.

Based on the original solutions, the original version of the system architecture is
constructed in the form of a packet diagram. Figure 3 shows the basic structure of software
packages.

MATEC Web of Conferences 226, 02024 (2018) https://doi.org/10.1051/matecconf/201822602024
DTS-2018

eit

patients settings
i A
: oot Tttt !
Lo
v L
monitoring archive

Fig.3. The basic structure of software packages.

The packages presented in Figure 3 contain software windows developed using the
MVC template.

- monitoring package contains a window in which the main logic of the software
operation takes place, namely the receipt, processing and analysis of measurement data in
real time;

- archive package contains a window for processing the previously acquired
measurement data.

- patients package contains a list of patients' medical records, with the ability to create
and edit the selected card.

- settings package contains the settings window.

In this paper, we only consider the implementation of the monitoring package, whose
packet diagram is shown in Figure 4.

monitoring

model

reconstruction }» e chart ‘ device ‘

A A N

! 1 |

omommmoee e bommmmmmmeeooo o :

I 1

] : il v] v
- drawer }» --= builder ‘ archive ‘

I A

Fig. 4. Initial structure of monitoring component.

The reconstruction package contains a set of classes that implement algorithms for
reconstructing the conductivity field of the human chest cavity. The device package
contains a set of classes providing interaction with the EIT device: opening the COM port,
initializing the device, acquiring the measurement data and closing the COM port, the chart
package contains a set of classes for working with graphs reflecting the lung ventilation
function with respect to the received data from the EIT device. The builder package in turn
contains a set of classes for reading the Json [12] array, which contains the coordinates of
the nodes of the finite element grid, as well as creating an array of structures to build it. The
archive package contains a set of utilities for compressing the received measurement data,
writing them to the Json file and saving the file in a specific directory. The drawer package
contains a class that represents the implementation of the "Facade" design pattern. The

MATEC Web of Conferences 226, 02024 (2018) https://doi.org/10.1051/matecconf/201822602024
DTS-2018

template provides a unified interface instead of a set of interfaces for some subsystem. The
facade defines a higher-level interface that simplifies the use of the subsystem [13]. Thus,
working with the modules of the monitoring window package and returning the data to the
controllers is enclosed in this package. The controller package contains a set of classes that
interprets user actions, notifying the model of the need for changes. The view package
contains a set of classes that is responsible for displaying the model data to the user,
responding to model changes.

2.1 Scalability and flexibility

To solve the problem of complex scalability of modules, it was required to reduce the
number of dependencies between packets and to arrange such that the specific
implementation of these packages did not interfere with the rest of the system. Since under
the existing implementation the change in some part of the module caused a change in the
module depending on it, the cost of each modification of the application increased.

The solution to this problem was the delegation of the creation of objects of specific
classes in a package containing a class that implements the "Factory method". Also,
reconstruction, device and builder packages are included in a separate package of services.

The design pattern "Factory Method" defines the interface for creating the object, but
leaves the subclasses deciding which class to instantiate. The factory method allows the
class to delegate instantiation to subclasses [6].

The corrected diagram of EIT software packages is shown in Figure 5.

eit
patients ‘ settings ‘
| A
e __ 1
! |
! |
] v]
monitoring }» - archive ‘
i i
I]
____________ I | |
! 1
] e
services F— - factories ‘

Fig.5. Corrected diagram of software packages EIT.

eit
factories }» 777777777777777777777777777777 = services

monitoring

1] ‘ 1

chart }<— -1 drawer }»— - archive ‘

view

Fig.6. Corrected diagram of the monitoring package.

4

MATEC Web of Conferences 226, 02024 (2018) https://doi.org/10.1051/matecconf/201822602024
DTS-2018

In the services package, there are also common interfaces for packages in the services
package, so that subclasses can produce objects of different classes that follow the same
interface. This introduction has led to the fact that modules that are subject to frequent
modifications will not affect the operation of the rest of the system. When you make any
changes to these packages, you only need to change the classes that are in the factories
package.

These solutions allow to increase the flexibility of these modules and make them as
independent as possible from other parts of the system. Thus, the problem of system
scalability is reduced, which is caused by the use of a single-level architectural model.

2.2 Portability

The current version of the software is implemented in the Java [10] language and is a cross-
platform application. However, some of the application modules are currently tied to a
specific operating system (OS). The drawer package defines the COM port number of the
device when it is initialized by idVendor and idProduct.

To do this, a package os has been created in the package eit.monitoring.model, the
structure of which is shown in the figure. The idVendor and idProduct numbers are stored
in an external XML file.

eit.monitoring.model
os

OSDetector

+ detectOS() : OperationSystem
T

V

<<Interface>>

OperationSystem

+getComPort(key : String) : String

LinuxOS WindowsOS

+ getComPort(key : String) : String + getComPort(key : String) : String

Fig.7. UML class diagram for the os package.

If the software is running on Windows, then the COM port of the device is determined
by the OS registry, if the device is running on a Unix / Linux operating system, the
connected devices are searched via USB. The search algorithm is shown in Figure 8.

conr?gcatrecg &‘: iLtjf\s/Be_ndor Enumerating Search directory by Obtaining COM-
and idProduct device device number port number

Fig.8. Block scheme for finding the COM port number of the device in the Linux OS.

2.3. Fault tolerance

To work with the device was chosen library jSSC [13], which makes convenient interaction
with the microcontroller on the COM-port. This library assumes a number of solutions for

MATEC Web of Conferences 226, 02024 (2018) https://doi.org/10.1051/matecconf/201822602024
DTS-2018

reading data from the controller: installing the listener on the COM port or standard reading
of the number of bytes from the buffer.

When working with the EIT device, errors occur that return values different from the
usual measurement data. To ensure the testability of this component and create a user-
friendly interface, we used the standard wait and notify lockout for the Java programming
language [14]. In Fig. 9 shows the sequence diagram of the module.

<<Listener>> <<Listener>>

:Drawer senfilPonConnectlf)n :SerialPortInitializaton :SerialPortReader
:SerialPortConnection

T
| |
| <<Event>> |
| |

T
|
|
| start() = writeString(COMMAND_START) -

serialPortConnection

serialPortConnection.wait()

return initializeCode ke serialPortConnection.notify()

[checkInitialization()]

new(serialPortConnection)

tryRecovery() recursion

loop
<<Event>>

[isUpdate()] updateMeas() | writeString(COMMAND_UPDATE) nl
» T Ll
|
|
serialPortConnection.wait() : readMeas()
. |
o fotwmmestist | |l s seriglPortConnectionnotify0_ _ _ _ _ _ _ _ |

L L I L

Fig. 9. The UML sequence diagram of the «device» component.

Figure 9 shows that when the device is successfully initialized, a new object of the
SerialPortRead class is created, which receives the measurement data using the readMeas ()
method, while the isUpdate () condition is satisfied. In the event of a device initialization
error, the SerialPortInitialization object returns a specific error code. It is also clear from
the figure that all work with the initialization of the device and the reception of
measurement data is achieved by using the events of the class called in the object
SerialPortConnection.

The problem of using events is that their execution occurs in a separate thread and, in
order to create a convenient interface for working with the device module, it was required
to block the execution of the main stream of the object of the SerialPortConnection class for
the time of initialization and reception of the measurement data. Thus, this implementation
allows the client-class Drawer to use a simple interface when working with the EIT device
without disturbing its execution flow.

Conclusion

The paper describes the experience of software development for the tasks of multi-angle
electric impedance tomography. The choice of architecture for the software product was
made and justified, design patterns were chosen.

The main attributes of the quality of the developed software are considered and
selected; selected architecture, design patterns and means for implementing the main
quality characteristics of the developed software are tested on a specific software module
for multi-angle electrical impedance tomography, showing the advantages and

6

MATEC Web of Conferences 226, 02024 (2018) https://doi.org/10.1051/matecconf/201822602024

DTS-2018

disadvantages of the developed product. The chosen solutions allowed creating a
convenient interface for working with the MEIT device, creating tools for effective user
interaction with the software, for example, switching the number of belts, displaying the
reconstructed data (2D, 3D). Automatic recovery of the device from the fault condition
allows to realize the fault tolerance of the system when working with the EIT device.

Work is performed within the grant of President of Russian Federation for state support of young
Russian scientists MK-196.2017.8 "Development of theoretical foundations and algorithms for multi-
view systems are three-dimensional electrical impedance tomography for non-invasive medical
imaging".

References

1.

10.
1.

12.
13.

14.

G. K. Aleksanyan, I. D. Shcherbakov and A. I. Kucher. J. of Eng. and Appl. Sc., 12(3),
587 (2017)

G. K. Aleksanyan, A. I. Kucher , A. D. Tarasov , N. M. Cuong, C. N. Phong. Int. J. of
Soft Comp., 10(6), 462 (2015)

G. K. Aleksanyan, N. I. Gorbatenko, A. I. Kucher, K. M. Shirokov, C. N. Phong,
Biosc. Biotech. Res. Asia., 12, 709 (2015)

G. K. Aleksanyan, N. I. Gorbatenko, V. V. Grechikhin, T. N. Phong, T. D. Lam,
ARPN J. of Eng. and Appl. Sc., 11(9), 5871 (2016)

G.K. Aleksanyan, N.I. Gorbatenko, A.D. Tarasov, Res. J. of Appl.Sc, 9 (12), 1030
(2014)

F.V. Stankevich, XIX Int. Sc. and Pract. Conf. "MOD. TECH. AND TECHN.", 19,
366 (2013)

ANSI/IEEE Std 1471-2000 https://standards.ieee.org/standard/1471-2000.html

8. M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, R. Stafford, Patterns of
Enterprise Application Architecture (Addison-Wesley, 2002)

Info: https://docs.microsoft.com/en-us/previous-versions/office/developer/server-
technologies/aa480455(v=msdn.10)

I. A. Lenhorova, New res. in the dev. of tech. and techn., 2, 48 (2015)

E. Gamma, R. Helm, R. Johnson, J. Vlissides, Privomy ob"yektno-oriyentirovannogo
proyektirovaniya. Patterny proyektirovaniya (Piter, Saint-Petersburg, 1994)

Info: http://json.org

R. C. Martin, Chistaya arkhitektura. Iskusstvo razrabotki programmnogo
obespecheniya (Piter, Saint-Petersburg, 2018)

R. Martin, M. Martin, Printsipy, patterny i metodiki gibkoy razrabotki na yazyke C#
(Symvol-Plus, Moscow, 2011)

