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Abstract. A multi-server queueing system, that is loaded continuously in 
certain periods of time and which functions for a certain amount of time 
allocated for the functioning of the system, is considered. Based on the 
renewal theory, an expression is obtained for the distribution density of the 
number of arrivals served herewith the service time for each server can be 
different. In the numerical example, the distributions of the number of 
services for the systems consisting of one, two, five servers are obtained. 
The approach to optimization of the queue using the stochastic model of 
supply and demand is outlined. According to the model, the distributions 
of the number of services, the queue length as the number of unused 
arrivals, the number of idle servers as the number of unused services are 
calculated. Each of these values corresponds to the cost. Knowledge of the 
distribution functions of the model indicators makes it possible to calculate 
the cost parameters with dependence of unit costs on the number of 
servers. The optimal number of servers can be selected from the condition 
of the maximum of the total average cost.  

1 Introduction  
The queue theory is often used for functioning description of complicated systems. It is 
under consideration the multi-server queueing system which is contiguously downloaded in 
some periods of time, and can be considered as a particular case of a system with batch 
arrivals. Thus, in [1] the situation is considered when, under conditions of low loading, the 
service begins when a certain number of arrivals in the system is clustered and ends when 
the system is completely freed.  

The articles examine queue with different service disciplines, a specific input process 
and/or service time; the possibility of a failure of the serving device [2, 3] is considered. In 
this case, at least one of these quantities has exponential distribution [4, 5]. In all articles, 
the characteristics of the system for the steady-state queue are studied. In [6, 7] steady state 
probability distributions were obtained. Some important performance measures such as the 
average number of arrivals in the system and the mean sojourn time have also been 
obtained in [7]. Arbitrary distributed times of arrivals and services are considered in [8], but 
only in the case of one server.  
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In the works on optimizing queue, only Markov systems are considered. In [9], in the 
case of several criteria, the theory of decision-making was used. In [10, 11], optimization 
was carried out by queue simulating.  

The paper studies the characteristics of a multi-server queue, at the input of which there 
is a batch arrivals. Service time is characterized by an arbitrary distribution and can be 
different on different servers. The service of arrivals is considered for horizontal time, 
which can be either deterministic tН, or random, ТН. The last case has not been treated in 
the references. 

An important characteristic of the general service process under consideration is the 
distribution of the number of services during the time ТН, tН. Distribution is the basis for 
optimizing the queue by establishing the optimal number of servers and (or) determining 
the rational service time due to the modernization of servers. 

2 Distribution density of the number of served arrivals 

When servicing in the one server, the number of services completed within the horizontal 
time will be random with the distribution density (according to the renewal theory)  
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K1(t) = E(t), E(t) – service time distribution function.  
In the case when the time TH, during which the processes are studied is random, the 

integral of the “convolution type” Kn(TH) is computed as follows 
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where EH(t) = P{TH ≤ t} – distribution function of the time TН.  
Simultaneous operation of m same servers during the time TН will be characterized, 

respectively, by the total flow of services. In general, we assume that each server is 
characterized by its service time.  

We obtain a formula for the distribution density of the number of arrivals served. The 
discrete analogue of (1) will have the following form  
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where am(j) – distribution density of m-th service for TН, tН, )( jAm
+  – distribution function 

of summary completion of m services. The “+” sign will further indicate that the indicator 
refers to the summary completion of the services.  

The required distribution density  
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Further we obtain  
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Consider the multiplier for am(0), which is according to (4) 
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With a random number of servers M with the distribution { }mMPmb ==)(  the number 
of completed services will have a distribution  
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3 Numerical example 

Consider a queue that is continuously loaded for 60 units of time. The service time by one 
server is distributed arbitrarily and does not exceed 10 units of time. The number of arrivals 
is not limited.  

3.1 A single server queue 

We assume that the service time has a Weibull distribution 
)1038.1exp(1)()( 54

1 ttEtE ⋅⋅−−== − ; while the average service time is t  = 5.58 units of 
time, coefficient of variation v = 0.23. On average, 10.57 arrivals will be served 
(calculation by formula tН / t ) simulating. The distribution varies from 9 to 13. 

If the service time is distributed according to )138.0exp(1)()( 2
2 ttEtE ⋅−−==  with 

average t = 2.54 units of time and v = 0.52, in the period of  60 units of time, 24.79 arrivals 
will be served. The distribution varies from 19 to 31. 

Comparison of the calculation results shows how much the distribution of service time 
is: it affects both the average number and the dispersion of a possible number of services. In 
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this case, as indicated above, the maximum service time by the server does not exceed 10 
units of time.  

3.2 Two server queue 

By the (5) we obtain the distributions of the number of services for three cases. If the 
number of arrivals at the entrance to the queue is not limited, then in the first case (E(t) = 
E1(t)) for time tН from 19 to 24 arrivals can be served; the average number of arrivals 
served is 21.15. In the second case (E(t) = E2(t)) two servers can serve from 42 to 58 
arrivals; the average number of arrivals served – 49.57.  

Let us consider a more interesting case, when the service time by one server is 
distributed according to the distribution function E1(t), the second – according to the E2(t). 
The average number of services calculated using the distribution )(na2

+ is 35.36 units and 
can no longer be determined by a calculation from the simple relation tН / t . 

The envelopes to the distribution densities for three cases are shown in Fig. 1.  

 
Fig. 1. Envelopes to the distribution densities of the served objects. 

3.3 Five server queue 

By the (5), we obtain similarly the distributions of the number of services. In the first case 
(E(t) = E1(t)) five servers can serve from 49 to 58 arrivals; the average number of arrivals 
served is 52.86. In the second case (E(t) = E2(t)) five servers can serve from 112 to 136 
arrivals; average number of arrivals served – 123.94. 

4 Approach to optimizing queue 

Optimization of the queue can be carried out by applying to it a stochastic model of supply 
and demand, for example [12, 13].  

Since the number of arrivals served by servers within the horizontal time is random, the 
total number of arrivals Z will be divided by the number +Z  of arrivals served and the 
number −Z of unserved arrivals by m servers during the time TH, tH. The value −Z  
determines the queue length. In turn, the possible number of services will be divided by the 
number +N  of used services and the number −N  of unused services. The random value −N  
is the number of downtime servers. The distribution density hm(n) of the numbers +N   

4

MATEC Web of Conferences 224, 04026 (2018) https://doi.org/10.1051/matecconf/201822404026
ICMTMTE 2018











==−

<
=

∑ ∑
−

=

∞

=

++

+

.zn  nana

,zn                              na
nh z

0n zn
mm

m

m ,)()(1

),(
)( 1 .     (7) 

The density qm(n) distribution of the number −N  of unused services and the density 
gm(n) distribution of the number −Z  of unserved arrivals, i.e. queue length distribution 
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Consider two servers with service times E1(t), E2(t). According to the density 
distribution of services (Fig. 1), if batch arrivals will not exceed 29, it will be served fully 
during the time tH = 60. On average over this period will be observed at 10 of the server 
downtime. 

If the service received 35 arrivals, an amount that is approximately equal to the average 
number of served arrivals for tH, then the average will be served 34.07 arrivals. The results 
of the calculations show that in 61.18% of the tH periods the arrivals will be serviced in 
full, in 13.18% of the periods will not be served by one arrivals, in 10.57% of the periods – 
by two arrivals, etc. Similarly, in 51.2% periods there will be no server downtime, 13.64% 
of the periods will be idle for one server, etc. 

If each of the values, ++ = ZN , −N , −Z  correspond to unit costs: 1
+Zc  – service of one 

arrival, 1
−Zc  – one non-service, 1

−Nc  – one downtime of the servers, then the average value 
of the costs )(mcZ+

, )(mcN−
, )(mcZ−

 is determined according to the formulas 
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where ++ = nz , −n , −z  – mathematical expectations. 
Instead of unit costs, there may be value tables )(ncZ+
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, 

disproportionate to numbers: serviced arrivals, servers downtimes, unused arrivals. In this 
case, the average values of costs )(mcZ+

, )(mcN−
, )(_ mcZ are determined by the relations  
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The optimal number of servers can be found by the maximum of the total average cost 
)()()( __ mcmcmc zNz −−+ . 

5 Conclusion 

Based on the deduced dependence for calculating the distribution density of the number of 
served arrivals, the distributions of the number of services for a system consisting of one, 
two, five servers were obtained. A comparison of these indicators for differently distributed 
service durations not exceeding a certain value is made. One can highlight that the periods 
of service by each channel can be characterized by different distribution laws. No 
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restrictions are placed on TH, tH duration, hence it allows to study both stationary and non-
stationary system. 

Using the supply and demand system, the queue length and the number of unused 
services distributions are obtained, and also the method for determining the optimal number 
of servers is indicated. 

Further development in research of support servers reliability account will be 
conducted. 
 
The work was supported by Act 211 Government of the Russian Federation, contract № 
02.A03.21.0011. 
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