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Abstract. The paper proposes a novel geometric error identification methodology for the tilting head of five-axis 

machine tools using double ball bar(DBB).Firstly, based on the motion condition of the tilting head of five-axis 

machine tools, three measurement patterns in Y direction, X direction and Z direction are proposed respectively. Then, 

the relative displacement equations of two balls of DBB in three measurement patterns are established respectively on 

the basis of homogeneous transform matrix (HTM) and multi-body system (MBS) theory. Finally, the geometric error 

parameters of the tilting head are identified totally. The presented method is universal and provides a reference for the 

error identification for the tilting head of five-axis machine tools. 

1 Introduction 

With a rapid development of precision machining for 

the complex parts, five-axis machine tools (FAMTs) are 

preferred with the advantages of higher material removal 

rate, better the ability of positioning and orienting the tool 

with respect to the workpiece and lower production cost. 

However, the existing FAMTs cannot provide the same 

machining accuracy as their three-axis counterparts due 

to the additional rotary axes leading more geometric error 

sources, thus hindering the development and practical 

implementation of five-axis precision machining.  

Over the past few decades, many researchers have 

investigated some efficient calibration approaches to 

identify the geometric error components of FAMTs based 

on double ball bar (DBB), which has been proved to be 

competent for rotary axes calibration. Zargarbashi et al. 

[1] presented a method to measure the position-dependent 

geometric errors of a trunnion-type A-axis using a DBB. 

Lee et al. [2] measured position-independent geometric 

errors of a rotary table axis(C-axis) and a trunnion axis 

(A-axis) of a five-axis machine tool using a DBB. Zhu et 

al. [3] proposed a new identification approach to 

recognize geometric errors of an A-tilting table by using 

a DBB. Zhang et al. [4] developed a novel measuring 

method to identify five geometric errors caused by the 

rotary table (C-axis) with a DBB. Lasemi et al. [5] 

provided a theoretical method to identify geometric errors 

of a rotary axis and C rotary axis utilizing a DBB. Chen 

et al. [6] proposed a comprehensive geometric error 

identification method for a tilt table using a DBB.  

As can be observed in the above-mentioned 

researches, the geometric error identification methods for 

rotary axes of FAMTs are rarely aimed at the tilting head 

(B-axis). Therefore, an adequate geometric errors 

identification methodology for the tilting head (B-axis) of 

FAMTs should be developed. 

2 The measuring principle based on the 
DBB 

As shown in Figure 1, Every DBB measurement 

system has two sockets. The one clamped by the tool 

holder on the spindle is denoted as Socket 1, and the 

other set on the worktable is denoted as Socket 2. Two 

ball of the DBB, which is denoted as Ball 1 and Ball 2 

respectively, are installed on the ball bowls of the sockets. 

The measurement of the rotary axes is usually realized by 

detecting position changes of two balls of the DBB. 

Tilting head
(B-axis)

Worktable
(C-axis)

spindle

Ball bar

Socket1

Socket2 Ball 1
Ball 2

Fig.1 The measuring diagram for the tilting head based on DBB

According to Ref. [3], kinematic chain and homog-

eneous transform matrix (HTM) have been widely used 

as a general modelling method. In addition, Fan et al. [7] 

proposed a generalized kinematics modelling method, 

regarding a machine tool as multi-body system (MBS) 
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including many rigid bodies. These theories can describe 

the motion relationship between adjacent bodies simply 

and conveniently (see Yang et al. [8] and Wu et al. [9]). 

Meanwhile, the position coordinates of two balls of the 

DBB can be transformed to the same coordinate system 

through kinematic chain respectively. Therefore, the 

mapping relationship between the theoretical model and 

actual measurement values can be established by 

calculating the distance between Ball 1 and Ball 2. 
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Fig.2 Schematic diagram of motion relation between the adjacent bodies 
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Fig. 3 The motion diagram of measurement pattern of  

Y direction for B axis 
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Fig. 4 The motion diagram of measurement pattern of  

X direction for B axis 

As shown in Figure 2, the position array of P in the Bj 

body coordinate system is represented 

as    1
T

j x y zr r r r  ,whereas the position array of P in the 

Bi body coordinate system is represented 

as    1
T

ji ji ji jir x y z . Hence,  jir  is described as, 

       l e l e

ji j j j j jr p p s s r                                          (1)  

Where        , , ,l e l e

j j j jp p s s  describe the relative position 

transformation matrix, the relative position error 

transformation matrix, the relative motion transformation 

matrix, the relative motion error transformation matrix 

between the Bi and the adjacent lower body Bj 

respectively. 
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Fig. 5 The motion diagram of measurement pattern of  

Z direction for B axis 

3 Results and Discussion  

3.1 The Identification Principle of Geometric 
Error Parameters 

Based on MBS theory, the tilting head (B-axis) has 

eight geometric errors, composed of six position-

dependent geometric errors ( ( ), ( ), ( ),x y zB B B   ( )x B , ( ),y B  

( )z B ), and two position-independent geometric errors 

( ,xB Bz  ). 

In the measuring process of the DBB, B axis is 

moving by multi-axes synchronous linkage to drive the 

spindle rotating around the centre point of Ball 1, whose 

position is required to keep unchanged. Figure 3-5 show 

three measurement patterns in Y direction, X direction 

and Z direction respectively. For the convenience of the 

research, the coordinate system of the centre point of Ball 

2 is represented as O X Y Z , whereas, the coordinate 

system of the gyration center of B axis is represented 

as ' ' ' 'O X Y Z . Note that O X Y Z  keeps stationary, and 
' ' ' 'O X Y Z  moves with the B axis. Fig.6 shows the 

position relation diagram of three measurement patterns. 

Due to the existence of geometric errors of B axis, the 

centre point of Ball 1 deviates from the deal position, 

denoted as A, C, and D respectively, to the actual 

position, denoted as A’, C’, and D’ respectively. 

Moreover, in ' ' ' 'O X Y Z , the coordinate of A, C, and D is 

represented as,    ' 0 0 1
T

o
A L  ，   ' 0 0 1

T

o
C L  , 
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   ' 0 0 1
T

o
D L  ,where L indicates the tool length 

between the gyration center of B axis and the centre point 

of Ball 1. 
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Fig.6 The position relation diagram of three measurement 

 patterns for B-axis. 

3.2 Measurement Pattern in Y Direction 

As shown in Figure 2 and 6(a), by utilizing (1), D’ is 

described to O X Y Z , then equation (2) is obtained. 
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'
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          (2) 

 

Where Bj indicates the rotating angle of B axis when 

the spindle moves from the initial position to the j-th 

position. yd  indicates the original length of the ball bar in 

the measurement pattern of Y direction. 

By simplifying Eq. (2) and ignoring the higher order 

term, the distance between D’ and O in coordinate 

system O X Y Z  is able to be represented 

as, 22 sin 2 cos 2 ( ) 2 ( )D O j xB y j Bz y x j y y j yL L B Ld B Ld B d B d          , 

Since 
D OL   is equal to the actual length of the ball bar 

in the j-th position, the following Equation can be 

obtained. 
22 sin 2 cos 2 ( ) 2 ( )j xB y j Bz y x j y y j y

y y

L B Ld B Ld B d B d

d d

       

  

                   (3) 

Where yd  indicates the length variation of the ball 

bar from the initial position to the j-th position in the 

measurement pattern of Y direction. 

Then, Equation (4) is obtained by simplifying (3) and 

ignoring the higher order term. 

( cos sin ( )) ( )Bz j xB j x j y j yL B B B B d               (4) 

Assuming that cos sin ( )j Bz j xB j x jQ B B B     ,then 

equation (5) is obtained as follows, 

( )j y j yLQ B d                                     (5)  

With two different values of L, the following equation 

is obtained. 

1 1

2 2

( )

( )

j y j y

j y j y

L Q B d

L Q B d





  


  
                               (6) 

According to Eq. (6), ( )y jB  and jQ  are represented 

respectively as follows, 

2 1 1 2 2 1

2 1 2 1

( )
y y y y

y j j

L d L d d d
B Q

L L L L


    
 

 
，    (7) 

When 0jB  o , i.e. B axis is at the initial position, 

( ) 0x jB  .Hence, 0Bz Q  .When 90jB  o  or 270o , 

equation (8) is obtained. 

90 90

270 270

( )

( )

j j

j j

j xB x jB B

j xB x jB B

Q B

Q B

 

 

 

 

   


  


o o

o o

                   (8) 

Due to the periodic distribution of ( )x jB , xB  and 

( )x jB  are represented respectively as,  

 270 90
2

( ) cos sin

j j
xB j jB B

x j j Bz j xB j

Q Q

B Q B B



  

 

  

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o o

              (9) 

3.3 Measurement Pattern In X Direction 

As shown in Figure 3 and 6(b), by utilizing (1), A’ is 

described to O X Y Z  as,  

        '
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  (10) 

Where 
xd  indicates the original length of the ball bar 

in the measurement pattern of X direction. 

By simplifying Eq. (10) and ignoring the higher order 

term, the distance between A’ and O in coordinate system 

O X Y Z  is represented as, 

'

22 cos ( ) 2cos ( ) 2sin ( )j x y j j x x j x j x z jA O
L L B d B B d B d B d B      

             (11) 

Since 'A O
L  is equal to the actual length of the ball bar 

in the j-th position, Eq. (12) can be obtained. 

22 cos ( ) 2cos ( ) 2sin ( )j x y j j x x j x j x z j

x x

L B d B B d B d B d B

d d

     

  

         (12) 
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Where 
xd  indicates the length variation of the ball 

bar from the initial position to the j-th position in the 

measurement pattern of X direction. 

Then, Equation (13) is obtained by simplifying (12) 

and ignoring the higher order term. 

cos ( ) cos ( ) sin ( )j y j j x j j z j xL B B B B B B d          (13) 

Assuming that cos ( ) sin ( )j j x j j z jP B B B B   , 

then Equation (14) is represented as follows, 

        cos ( )j y j j xL B B P d                                 (14) 

With two different values of L, the following equation 

is obtained. 

1 1

2 2

cos ( )

cos ( )

j y j j x

j y j j x

L B B P d

L B B P d





   

   

                         (15) 

According to Eq. (15), ( )y jB  and jQ  are represented 

as respectively, 

2 1 2 1 1 2

2 1 2 1

( )
( )cos

x x x x
y j j

j

d d L d L d
B P

L L B L L


     
 

 
，       (16) 

3.4 Measurement Pattern in Z Direction 

As shown in Figure 4 and 6(c), by utilizing (1), C’ is 

described to O X Y Z  as,  

        '
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(17) 

Where zd indicates the original length of the ball bar 

in the measurement pattern of Z direction. By simplifying 

Eq. (17) and ignoring the higher order term, the distance 

between C’ and O in O X Y Z is represented as, 

'

22 sin ( ) 2cos ( ) 2 ( ) sinj z y j j z z j x j z j zC O
L L B d B B d B B d B d     

                               (18) 

Since 'C O
L  is equal to the actual length of the ball bar 

in the j-th position, Eq. (19) can be obtained. 
22 sin ( ) 2cos ( ) 2 ( ) sinj z y j j z z j x j z j zL B d B B d B B d B d       

(19) 

Where 
zd  indicates the length variation of the ball 

bar from the initial position to the j-th position in the 

measurement pattern of Z direction. 

Then, Equation (20) is obtained by simplifying (19) 

and ignoring the higher order term. 

sin ( ) cos ( ) sin ( )j y j j z j j x j zL B B B B B B d        (20) 

If assuming, cos ( ) sin ( )j j z j j x jR B B B B   , Then, 

there is sin ( )j z j y jR d L B B   . Hence, ( )z jB  and 

( )x jB  are represented respectively as, 

( ) cos sin

( ) cos sin

z j j j j j

x j j j j j

B B R B P

B B P B R





 


 
                 (21) 

So far, according to the above measured results in three 

different patterns in the X, Y, and Z direction, the five 

position-dependent geometric error parameters ( ( )x B , 

( )y B , ( )z B , ( )x B , ( )y B ), and two position-

independent geometric error parameters ( xB , Bz ) for 

the tilting head of five-axis machine tools can be solved 

totally.  

4 Conclusions 

Based on the motion condition of the tilting head of 

five-axis machine tools, three measurement patterns in Y 

direction, X direction and Z direction are proposed 

respectively using DBB . Then, the relative displacement 

equations between two balls of DBB in measurement 

patterns in Y direction, X direction and Z direction are 

established respectively on the basis of HTM and MBS 

theory. Finally, the geometric error parameters of the 

tilting head (B-axis) are identified totally. The presented 

method in this paper is universal and provides a reference 

for the error identification for the tilting head of five-axis 

machine tools. 
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