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Abstract. In the present work, a cantilever beam based piezoelectric 
energy harvester is investigated both theoretically and experimentally. The 
harvester is consists of a harmonically base excited vertical cantilever 
beam with a piezoelectric patch at the fixed end and a mass attached at an 
arbitrary position. The Euler-Bernoulli beam theory is applied considering 
the cantilever beam to be slender. The temporal nonlinear 
electromechanical governing equation of motion is obtained by using 
generalized Galerkin’s method considering two-mode approximation. Here 
for principal parametric resonance condition the steady state response of 
the voltage is obtained by using the method of multiple scales. The results 
are validated by developing an experimental setup of the harvester. For the 
harvester having a dimension of 295 mm 24 mm 7.6 mm,   a maximum 
voltage of 40 V is obtained for a base motion of 9 mm with a frequency of 
10.07 Hz when 15 gm mass is attached at a distance of 140 mm from the 
fixed end. 

1 Introduction  
Development in smart devices used for sensing, human and structural health monitoring 
and actuation requires low power to operate. These devices are operated by batteries which 
in addition, are having a limited life span, environmentally unfriendly and requires a regular 
replacement. This dependency of smart devices on power supply is not really smart. So to 
overcome this drawback researchers are exploring other nontraditional means to power 
these devices by extracting untapped ambient energy from sources such as light, wind, 
temperature and potential gradient, noise, sound and vibration etc. This energy can be 
transformed by three basic transduction mechanisms namely electromagnetic, electrostatic 
and piezoelectric. Out of three the piezoelectric transduction mechanism is getting the most 
attention due to its high power density and ease of application [10].  

In general, linear vibration based piezoelectric energy harvester systems work over a 
short range of bandwidth near the resonance frequency. Energy transduction reduces 
sharply for mistuned (away from resonance) linear harvesting systems. To address this 
issue researchers are focusing on tapping the rich dynamics which is outcome of inherent or 
induced nonlinearity. Nonlinear systems display behaviours such as bifurcation, chaos, 
                                                           
* Corresponding author: anshul.sv@gmail.com 



2

MATEC Web of Conferences 211, 02009 (2018)	 https://doi.org/10.1051/matecconf/201821102009
VETOMAC XIV

internal resonance that linear systems cannot. The multi-branched fixed point response of a 
nonlinear system may be periodic, quasi-periodic and chaotic in nature. Energy harvesters 
based on nonlinear vibration have potential to extract energy due to multiple resonance 
conditions which may lead to enhanced frequency band width. The source of nonlinearity 
can be of the geometric or material in nature. It can also arise due to external excitation and 
constraints such as impact, friction, backlash and freeplay [4, 5]. The frequency bandwidth 
over which the higher transduction of mechanical energy to electrical energy takes place 
can be increased by exploiting the inherent or induced nonlinearity [6].  

A large response can be produced by small parametric excitation [7] even when the 
frequency of excitation is away from the fundamental frequency of the system. Daqaq et al., 
[3] investigated a nonlinear parametrically excited cantilever beam based harvester. A 
critical amplitude of excitation is necessary to be maintained always to get nontrivial 
system response. In a similar work where parametric excitation is considered Abdelkefi et 
al., [9] developed a distributed parameter model of parametrically excited nonlinear PEH 
system having a cantilever beam and a tip mass.  

In the present work a parametrically excited cantilever beam with piezoelectric patch 
and an attached mass is considered for dynamic analysis. The similar system is analyzed by 
Zavodney and Nayfeh [1] considering single mode approximation and without piezoelectric 
element. Also by considering two mode approximation similar model is analysed 
analytically by Kar and Dwivedy [2] and Dwivedy and Kar [8] without piezoelectric patch. 
Here the Generalized Galerkin’s method is used to discretize the spatio-temporal equation 
of motion to its temporal form. Steady state response and output voltage is obtained by 
using perturbation method namely the Method of multiple scales (MMS) to reduce the 
equations of motion into first order differential equations. In house experimental setup is 
developed in order to verify the results obtained analytically.  

 

2 Mathematical modeling  
 
The schematic of parametrically excited ( 0( ) cos( )z t z t  ) piezoelectric energy harvester 
of length L consists of a massm at a distance d and piezoelectric patch of length pL is shown 
in Fig. 1. At a distance s , ( , )u s t  and ( , )v s t  denotes the longitudinal and transverse 
displacements. The curvature and displacement expression is considered nonlinear due to 
large transverse geometric deflection. The following nonlinear electromechanical equation 
of motion [1, 2, 10] is obtained   
 
        0( ) ( ) ( )( ) ( ) 0tt t ssss s s ss s s tt s ss s

m s d v cv EI v v v v J s d v Nv H V t            

                         (1) 
Here 0, ( ), , , , ,c EI J H V   and   denotes mass per unit length, Dirac delta function, 
damping coefficient, flexural rigidity, moment of inertia of attached mass, Heaviside 
function, voltage and coupling term for series connection respectively.  
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Figure 1. Schematic of a parametrically excited piezoelectric energy harvester (PEH) 

 
The inextensibility condition  2

0
( , ) (1 2) ( , ) ( )

s
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load resistance, lR  becomes 
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The boundary conditions are  (0, ) 0, (0, ) 0, ( , ) 0, ( , ) 0s ss sssv t v t v L t v L t            (3)
Here , , , ps t C  and pi denotes the variable of integration along longitudinal direction, 
curvilinear variable and time, capacitance, and current source. As per Galerkin’s method 
the transverse displacement ( , )v s t  is represented by 
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Here we assume that the terms  , , , , , cos( )n n n
n klm klm klm n nm mf q      which denotes the 

damping, geometric and inertial nonlinearities, electromechanical coupling and parametric 
excitation [7] are small hence considered of the order of  (book keeping parameter). In the 
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absence of piezoelectric patch the equation of motion of the system reduces to the model 
investigated by Zavodney and Nayfeh [1]. 

3 Perturbation analysis 
To obtained analytical expression for transverse displacement, generated voltage and 
power, a uniform first order approximate analytical solution of Eq. (4) and (5) is obtained. 
Method of multiple scales (MMS) is used to meet this end which describe the dynamics of 
the nonlinear system. The system dynamics under parametric resonance case is studied. In 
order to implement MMS the time dependence is discretize into multiple time scales as 

; 0,1,2,...i
iT i    and time derivatives expressed as: 

2
0 1 ( ),D D Od d      2

0 0 1
2 2 2 ( )D D D Od d       

where i iD T   . The solution of displacement and voltage ( ,nq V ) expressed, expanded 
or discretize as 

         20 0 1 1 0 1
2

0 0 1 1 0 1 ( ; ) , ,( ; ) , , ( );n n n V V T T V T T Oq q T T q T T O                     (6) 
Later substituting these expansions of solution (Eq. (6)) in Eq. (4) and comparing the 

coefficients involving terms 0 and 1 , yields the following set of differential equations  
0( ) :O                        2 2

0 0 0 0 0 0 0 0
1

0;n n n e n n
n

D q q D V rV K D q




                              (7) 
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
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                                                                                           (8) 
The solution of Eq. (7) expressed in the following form 

2

0 1 0 0 1 0
1

( )exp( ) , ( )exp( )n n n n n n n
n

q A T i T cc V K Z A T i T cc 


            (9) 

Here  1nA T  is a slowly varying complex valued function and cc  is an abbreviation for 
complex conjugate term. Further expanding Eq. (8) by utilizing Eq. (9) the secular and near 
secular terms are obtained for first two modes ( 1,2n  ). These obtained secular terms 
should be eliminated so that finite amplitude response exist.  
 
Case : Principal parametric excitation ( 1 12    ) 
Considering only single mode approximation ( 1n  ) and when excitation frequency ( ) is 
near to twice of first natural frequency of the system that is 12  (condition of principal 
parametric excitation). After solving the electromechanical equation of motion by Method 
of multiple scales and invoking the solvability condition by making secular term zero to 
find the value of unknown 1 1( )A T . Writing 1 12     where 1 and  are detuning and 
book keeping parameter which shows the nearness of excitation frequency to 12 . 
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2
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Here 1 1 1T     and 1 1      . 
 

Table 1. Properties of Piezoelectric Patch 
SP-5H (PZT-5H)  [11] 
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Table 2. Geometric and material properties. 
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Figure 2. Voltage variation with excitation frequency for 0.005   and 1   

 
The variation of voltage with nondimensional frequency of excitation is shown in Fig. 2 for 
two different parameter of damping. For higher damping the bandwidth increases slightly. 
The experimental findings (see Fig. 2) matches with analytical analysis. A voltage range 
from 30 V to 50 V is obtained when the system excited near to parametric excitation. The 
voltage follows the amplitude topologically due to proportionality. 

4 Experimental setup 
In house experimental setup consists of mbed NXP LPC1768 Microcontroller, encoder, 
display unit, power supply, PM DC motor (24 V, 3000 rpm), energy harvester etc., as 
shown in Fig. (3). Output voltage is obtained using the oscilloscope (InfiniiVision DSO-X-
3024A). The harvester consists of a 50mm long and 24mm wide PZT patch attached to a 
stainless steel beam with a 15g mass attached at a distance of 140mm. The cantilever beam 
is having dimensions of 295 mm 24 mm 7.6 mm  .  The properties of the PZT and beam 
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can be found in Table 1 and Table 2. The developed shaker is used to excite the beam near 
twice its first natural frequency which is termed as parametric excitation. The frequency 
range of the shaker is 25 Hz and stroke length is 9 mm.  
 

 

Figure 3. Experimental setup with all components and voltage response of PEH system under 
parametric excitation 

5 Conclusion 
A parametrically excited harvesting system consists of a cantilever beam with piezoelectric 
patch and attached mass is analysed. Analytical expressions are developed to measure the 
steady-state amplitude and voltage for parametric excitation case. Method of multiple 
scales is used to obtain reduced expressions which are compared with experimental 
findings and found to be in good agreement. High voltage of approximately 40 V is 
obtained. One can vary the mass and its position along the beam to adjust the frequency of 
the system accordingly to the frequency of excitation. This analysis is limited to parametric 
excitation but one may analyse the system by considering multimode dynamics with 
internal resonance.  
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