

A Dynamic Hierarchical Evaluating Network for Real-Time
Strategy Games

Weilong Yang1, Qi Zhang1, Yong Peng1

1Department of Modeling and Simulation, National University of Defense Technology, Changsha, China

Abstract. Researches of AI planning in Real-Time Strategy (RTS) games have been widely applied to

human behavior modeling and combat simulation. State evaluation is an important research area for AI

planning, which ensures the decision accuracy. Since complex interactions exist among different game

aspects, the weighted average model usually cannot be well used to compute the evaluation of game state,

which results in misleading player’s generation strategy. In this paper, we take dynamic changes and

player’s preference into consideration, analyze player’s preference and units’ relationships base on game

theory and propose a dynamic hierarchical evaluating network, denoted as DHEN. Experiments show that

the modified evaluating algorithm can effectively improve the accuracy of task planning algorithm for RTS

games.

1 Introduction

Real-Time Strategy (RTS) games are popular real-time

combat simulation games in which players instruct units

to gather resources, build structures, destroy opponent’s

buildings to win the game. As typical agent-based game,

RTS games pose a huge challenge for AI researchers due

to the large state space, limited decision time and

dynamic adversarial environment involved. AI planning

becomes an important research area for real-time

adversarial planning and non-determination decision [1].

State evaluation is an important part of AI planning. By

calculating correlative factors and player’s preference,

the evaluation of game state is obtained, which can be

used to judge whether the state is advantageous for

player or not. As basic algorithm for player’s planning

and decision, evaluation method can influence the

decision process, and improve the performance of AI

planning in games.

Current evaluating algorithms take related factors

into consideration to obtain a state score. This method is

applicable to simple and fixed game scene. However, in

RTS games, the evaluating factors are constantly

changing, for which fixed evaluating algorithm cannot

accurately describe the game state at different game

phases. For example, the current evaluating function

does not consider the spatial relationship between units,

resulting in that units at different positions still are

calculated by carried resources and hit-point value.

This paper focuses on the evaluating process in RTS

games and constructs a hierarchical network similar to

HTN planning method. By decomposing evaluating

factors, the relationships between different factors are

analysed. Considering the changing weights, a dynamic

hierarchical evaluating network is constructed and a

dynamic weights calculating algorithm is proposed. In

the remainder of this paper, after discussing related work,

we first present the definition of hierarchical factor

network. Then we propose dynamic weight calculating

method, followed by extensions to apply it to µRTS

games, a minimalistic RTS game used for planning

algorithm evaluation.

2 Related Works

2.1. RTS games

RTS games are regarded as a simplification of combat

simulation and could therefore serve as a test bed for

investigating activities such as real-time adversarial

planning and decision making under uncertainty [2].

Compared with conventional board games, RTS games

have the following primary differences [3]:

1. Players can pursue actions simultaneously with the

actions of other players, and need not take turns.

2. Player actions can be conducted over very short

decision times, allowing for rapid sequences of actions.

While Player actions are durative, in that an action

requires numerous time steps to be executed.

3. The state space and branch factors are typically

very large. For example, a typical 128 × 128 map in

“StarCraft” generally includes about 400 player

controllable units. Considering only the location of each

unit, the number of possible states is about 101685,

whereas the state space of chess is typically estimated to

be around 1050.

4. The environment of an RTS game is dynamic and

non-determinability. The opponent’s action is not

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0

(http://creativecommons.org/licenses/by/4.0/).

MATEC Web of Conferences 208, 05003 (2018) https://doi.org/10.1051/matecconf/201820805003
ICMIE 2018

controllable and the executing task may be broken down

by the uncertain environment.

Research has been conducted to modify game tree

search methods to address these differences. Chung

investigated the applicability of game tree Monte Carlo

simulations in RTS games [4]. Balla and Fern applied

the upper confidence bound for trees (UCT) algorithm in

an RTS game to address the complications associated

with durative actions [5]. Churchill addressed the

complications associated with simultaneous and durative

actions by extending the alpha–beta search process [6].

Methods such as combinatorial multi-armed bandits have

attempted to address the challenge of large branching

factors [7-8]. Ontañón and Buro combined the

hierarchical task network (HTN) planning approach with

game tree search to develop what was denoted as

adversarial HTN [9]. Among these planning algorithms,

evaluating algorithm is needed to calculate the current

and play-out game state.

2.2 State Evaluation in RTS games

Alexander [10] first described evaluating process in RTS

game state, proposing an evaluating function by

calculating the hit-point and attack ability of units. LTD

(Life-Time Damage) is a modified evaluating algorithm,

which based on the lifetime damage each unit can inflict.

And by weaken the contribution of hit-point, LTD2

algorithm is proposed [9]. Tung [11] combined the LTD

method and the unit portfolio evaluation to evaluate

game state, but did not consider the relationship between

two algorithms.

Taking nonterminal position into consideration,

Stanescu [12] modified the state evaluating algorithm by

taking other properties into account, such as resources,

visibility, security, and goals. By putting forward the

concept of visibility and detection, a formula is given to

calculate the efficiency of detection. Graham Erickson

[13] proposed a global evaluating function model for

predicting which side would win after a period of game

play-out. Taking military features, economic and player

skill into consideration, the logistic regression is used to

learn the model weights. Alberto [14] used a contrastive

evaluating algorithm to obtain the score by calculating

the difference between player and its opponent. Bakkes

[15] generated evaluating function by using a central

data store of samples of gameplay experiences.

Besides traditional evaluating function method with

expert knowledge, learning method is also used to

evaluate game state. Li [16] used a GA-based

reinforcement learning method named ELM to calculate

the optimal unit combination strategy, and building

strategy. Marius [17] proposed the use of neural network

method for evaluation, the spatial relationships between

units were also considered in the category. Learning

method can achieve good performance but need pre-

learning and large dataset, and if the game parameters

changes, it will be useless unless the dataset for changed

parameters is provided.

Previous researches mostly use fixed factors and

weights to evaluate the state, the relationships between

factors are not considered. In this paper, we use

hierarchical evaluating network to express factors and

relations. By taking game state and player’s evaluating

principle into consideration, a dynamic weight

generation algorithm is proposed, which can help

evaluating game state more accurately.

3 Hierarchical Evaluating Networks

Evaluating algorithm is the basis of decision-making

method, which can lead the planning process. There are

two important aspects in evaluating game state:

evaluating factors and factors’ weight. This section

employs a hierarchical network to manage evaluating

factors and use regression algorithm to calculate the

dynamic weights.

3.1. Hierarchical factor network

The evaluation of game state reflects the players’

judgment of game state by taking different aspects

factors into consideration. For different level issues, the

evaluating factors are also different. In simple games

such as Super Mario, the winning gold is the only factor

which reflects state value. For RTS games, considering

the complexity and the diversity of game process, the

more factors are considered, the more comprehensive the

judgment can be.

HTN is an automatic planning method using

hierarchical approach to decompose complicated task

into sub-tasks until all the sub-tasks can be executed [18].

Since the planning process is similar to human decision

process, HTN algorithm achieves satisfying results in

solving complex problem and is more sufficient to

handle large state space than other planning algorithms

[19]. The domain knowledge of HTN planning includes

compound actions, atomic actions, and patterns.

Inspiring by HTN process of solving problems, we

propose a hierarchical evaluating network for RTS

games. Similar to HTN, HEN is a tree structure network,

in which nodes can be classified as compound nodes and

primitive nodes. Compound nodes represent tasks and

missions, which are composed of primitive nodes and

compound nodes. Primitive nodes stand for state

attributes that can be directly calculated. By analysing

game state from different levels and perspectives, the

evaluating aspects are systematically considered. For

RTS games, HTN networks are mostly divided into two

or three layers [20]. Two-layer includes macro layer and

micro layer, macro layer represents for player goal and

global strategy and micro layer represents for teams’ or

units’ control and actions. Three-layer includes strategy

layer, tactical layer and reaction layer. Each layer

corresponds to different planning level.

We use the three-layer network to structure the

hierarchical evaluating network since it can describe the

game state more comprehensive. The strategy layer

stands for player's top strategy and winning goal. The

tactical layer focuses on the player’s tactical strategy,

such as opponent modelling, task assignment and

development strategy selection. The reaction layer is

2

MATEC Web of Conferences 208, 05003 (2018) https://doi.org/10.1051/matecconf/201820805003
ICMIE 2018

indicators of tactical task which can be calculated

directly, such units’ position for tactical position

selection, and map’s occupied information for path

planning. By decomposing factors from strategy layer to

reaction layer, a factor tree is constructed. In the tree,

upper layer is decomposed into the lower layer.
Goal

Hit-point cost position Sensing radius

Reacting

Tactical

. . .

Fig 1. Illustration of a network generated by the HEN

algorithm for depth 3.

As shown in Figure 1, in the HEN network, aspects

are integrated and all layers can be decomposed to

factors. The connection lines between indicators stand

for the relationships among the indicators at each level.

By constructing network between indicators, it can be

found that one sub-indicator can affect multiple upper-

level indicators. The evaluation of game state and factor

relationships can be expressed as follow:

1 1

() ()

() (, , ttribute,)

n m

i j

i j

father sub

E s E f

E f factor factor A Weight

 












 (1)

The evaluation of game state ()E s is the summation

of all aspects’ scores. ()i jE f stands for the evaluation of

each factors.
father

factor stands for the father factor,
sub

factor

stands for the sub factor. ttributeA stands for the

attributes of current factor. Weight is the current factor’s

weight of its father task.

Using hierarchical network to calculate the state

situation, a comprehensive attention can be given to both

overall and detail factors. In Table 1, the domain

knowledge used in DHEN to construct the hierarchical

network is listed. The tactical layer includes 4 different

aspects, and the reacting layer includes 10 indicators

which can be calculated.

Table 1. Domain Knowledge of DHEN.

Tactical Reacting

Economic

Military

Building

Sensor radius

Resources in units

Resource in base

Total resource

Unit number

Work number

Light rush number

Heavy rush number

Building cost

Building hit-point

Unit position

3.2. Dynamic weight

The essence of RTS game is a two-player zero-sum

game. Traditional planning algorithms usually use pre-

given factor’s weights to evaluate game state, which

means the evaluation is fixed from game beginning to

the end. But in fact, along with the game evolving,

player’s preference will change, which means the

evaluating principle should change. In this section, we

employ three dynamic indexes to describe game

dynamic changes: player’s strategy S , game time T ,

and game state Situation .

Player’s strategy S refers to the initial strategy

adopted by each player for gaming. For RTS games, it

refers to the game AI used in different players, which

designed by hardcode or auto-planning technology. For

example, for aggressive decision makers, in the early

stages of game, they prefer to create initial forces to

attack; for technology decision makers, they prefer to

upgrade technology. (min, max,)G p stands for

player’s goal. Different game principles can be sorted as

three types: radical, conservative, balanced. For example,

for radical players, they try to destroy his enemy leaving

out consideration about their own loss, and their

principles can be expressed as min()G b . In Table 2

shows the principles of typical RTS AI methods:

Table 2. Typical AI methods.

AI Strategy

Random
A random strategy AI which executes

actions randomly.

Worker

Rush

A hardcoded rush strategy that constantly

produces workers and sends them to attack.

Light

Rush

A rush AI which builds a barracks, and then

constantly produces light military units to

attack the nearest target (it uses one worker

to mine resources).

Heavy

Rush

Identical to LightRush, except for producing

slower but stronger heavy units.

Monte

Carlo

A standard Monte Carlo search algorithm:

for each legal player action, it runs as many

simulations as possible to estimate their

expected reward.

AHTN

An Adversarial Hierarchical Task Network,

which combines minimax game tree search

with HTN planning.

Game time T affects the evaluating principle in two

aspects: one is that since the total game time is given,

players’ strategies must consider the game time

comparing with the final game time. On the other hand,

even the same situation may have different effects at

different times. Using an exponential decline method,

the player's preference for is described as the game time

increases.

The game situation Situation refers to the

comparison of two forces. There are two levels of

comparison, the relationship between your own forces

and your own basic decision-making strategies. When

the strength of one's own side does not meet the basic

3

MATEC Web of Conferences 208, 05003 (2018) https://doi.org/10.1051/matecconf/201820805003
ICMIE 2018

needs of resource collection, it is better to send units first

to collect resources rather than attack. The second level

is the comparison of the strength of the enemy and the

enemy. When the strength of the enemy is far greater

than the strength of one's own, it should be rather

defensive rather than offensive.

Based on the above three aspects, we dynamically

adjust the calculation of weights

_ (, , ())f e p t evaluation s as follow:

_ (, , ())

((max,min,)) ()
max_

f e p t evaluation s

t
g G p evaluation s

time
  

 (2)

()g x stands for the union relation between

(max, min,)G p and time proportion, ()evaluation s

stands for the contrast evaluation in state s .

The process of dynamic weight generating algorithm

is as follow: Line 1-3 show that, player obtain the game

time t and player principle p under the evaluated state.

Line 4-10 show that player get the evaluation of its own

evaluation(s, max) and its opponent’s evaluation(s, min).

Line 11-13 show the generation of evaluating weights

under p, t and evaluation(s).

Algorithm 1 Dynamic Weight Generation(s)

1. While state s need to be evaluated

2. Get the game time denoted as t

3. Get player principle denoted as p

4. For unit in unit(s)

5. If unit belongs to max then

6. add unit to evaluation(s, max)

7. Else If unit belongs to min then

8. add unit to evaluation(s, min)

9. End If

10. End For

11. dynamic_weight= f_e(p, t, evaluation(s))

12. End While

13. Return dynamic_weight

4 Experiments and Result

In order to verify the proposed algorithm, an empirical

study based on µRTS game is carried out, and the

performance of DHEN is compared to the performances

of other state-of-the-art evaluating algorithms developed

for RTS games.

4.1. Experiment Environment and Setting

Fig 2. A screenshot of the µRTS game environment. The two

players are distinguished according to the blue and red outline

colors. The green squares are resources. The white squares are

bases. The gray circles are workers, the yellow circles are

heavy attackers, and the orange circles are light attackers.

We evaluated the performance of DHEN algorithm

using the free-software µRTS (https://githubs.com/

santiontanon/ microrts), which has been used by several

researchers to validate new algorithms for RTS games.

Figure 2 shows a screenshot of a µRTS game, in which

two players compete to destroy opponent’s units.

The maps used in our experiments are three: M1 (8 ×

8 tiles), M2 (12 × 12 tiles), and M3 (16 × 16 tiles).

Maximum game time of M1 is limited to 3000 cycles, of

M2 is 3000 cycles, and of M3 it is to 10000 cycles.

To evaluate each algorithm, we conduct a round-

robin tournament, in which each algorithm plays 50

games against all other algorithms in each of 3 different

maps. The method used to compute the score of each

algorithm is: the winner of each game is awarded 1 point,

and both algorithms are awarded 0.5 points in the event

of a tie. Each of the two AI players in all competitions

begins with a single base, an equivalent resource value,

and a single worker.

4.2. Experimental Results and Analysis

In this section, we compare the performance of DHEN

with other evaluating algorithms in terms of the average

score in three maps. We compared DHEN algorithm

with simple LTD evaluating function, optimal LTD

evaluating function and lanchester evaluating function

by applying them in AHTN planning algorithm and

IDABCD planning algorithm.

Figure 3 and Figure 4 presents the comparison of the

average scores obtained for using different evaluating

algorithm in AHTN and IDABCD algorithm. According

to the results, applied in both planning algorithm, the

DHEN evaluating function can achieve better results.

Since the AHTN algorithm has more approaches and

depending heavier on evaluation function, the preference

is better. In addition, the performance of DHEN varies

little with the increasing scale of the maps. The

performances of both players deteriorate in map M1

because the map is relatively smaller, so the difference

between optimal action and normal action is not obvious

4

MATEC Web of Conferences 208, 05003 (2018) https://doi.org/10.1051/matecconf/201820805003
ICMIE 2018

https://githubs.com/%20santiontanon/%20microrts
https://githubs.com/%20santiontanon/%20microrts

for results. With respect to other algorithms, we note that

Lanchester evaluation function and optimal evaluation

function do not achieve an anticipant performance as it

performed in MCTS algorithm. But both algorithms

perform better in AHTN algorithm, reveals that the

optimal parameters is changing when applied in different

planning algorithms.

Table 3. Average Scores of each HTN algorithm with different

domain knowledge.

Planning

Algorithm

Simple

eval.

Optimized

eval.

Lanche

ster

DHE

N

IDABCD 81.6 80.3 73.3 84.3

AHTN 78.3 73 79.3 89

Table 3 shows the average scores of each evaluating

algorithm applied in IDABCD and AHTN. We can find

that the DHEN algorithm applied in IDABCD improves

win rate about 3% compared with simple evaluation

function, which performs best among the three

benchmark algorithms. The performance of DHEN

applied in AHTN brings an improvement of winning rate

about 12% compared with the lanchester evaluating

function. We can find that, compared with planning

process, the evaluation time cost little time.

Fig 3. The average score of each evaluation used in AHTN

algorithm for map M1, M2, M3 with respect to the CPU time

100 ms.

Fig 4. The average score of each evaluation used in IDABCD

algorithm for map M1, M2, M3 with respect to the CPU time

100 ms.

Figure 5 shows the average decision times of four

evaluating functions. Since the AHTN algorithm is

flexible than IDABCD, it needs more decision time. We

find that DHEN cost almost the same time as simple

LTD evaluating function and optimal LTD evaluating

function, because they are calculated according to the

same evaluating structure. Since lanchester evaluating

function is an iterative process, it needs more time. The

DHEN algorithm increase the decision time about 10%

compared with simple/optimal LTD algorithm.

Therefore, the modification in DHEN brings little time

increment compared to LTD evaluation algorithm, which

is within an acceptable range.

Fig 5. The average decision times of DHEN applied in

IDABCD and AHTN.

5 Conclusions

In summary, we have performed both experimental and

theoretical study of evaluating RTS game state. A

dynamic hierarchical evaluation network is proposed to

handle the evaluation problem accompany with the

planning process. The experimental results in µRTS

game successfully verify the algorithm’s validation.

In future work, the DHEN algorithm can be extended

in multiple directions. Our experiments demonstrate that

domain knowledge of the HEN has a significant

influence on the performance of DHEN. However,

encoding perfect evaluation network is a difficult and

time-consuming process. The automatic extraction of

HTN domain knowledge from thousands of RTS game

replays may provide an efficient approach.

In addition, we note that using deep learning

algorithm to calculate the weights of factors may

improve the veracity of planning. Therefore, a modified

DHEN algorithm using learning method may enhance its

performance in huger game environment.

Acknowledgment

The work described in this paper is sponsored by the

National Natural Science Foundation of China under

Grant No. 61473300.

References

1. Buro, M. Call for AI research in RTS games. In

Proceedings of the AAAI-04 Workshop on

Challenges in Game AI (2004), pp.139-142.

2. Ontañón, S., Synnaeve, G., Uriarte, A., Richoux, F.,

Churchill, D., & Preuss, M. (2013). A survey of

real-time strategy game ai research and competition

5

MATEC Web of Conferences 208, 05003 (2018) https://doi.org/10.1051/matecconf/201820805003
ICMIE 2018

in starcraft. IEEE Transactions on Computational

Intelligence & Ai in Games, 5(4), pp. 293-311.

3. Ontañón, S. Experiments with game tree search in

real-time strategy games. Artif. Intell. 2012,

arXiv:1208.1940.

4. Chung, M., Buro, M., & Schaeffer, J. (2005). Monte

Carlo Planning in RTS Games. IEEE Symposium on

Computational Intelligence and Games (pp.117-124).

DBLP.

5. Balla, R.K.; Fern, A. UCT for tactical assault

planning in real-time strategy games. In

Proceedings of the 21st International Jont

Conference on Artifical Intelligence; AAAI Press

Palo Alto,, CA, USA, 2009; pp. 40–45.

6. Churchill, D.; Saffidine, A.; Buro, M. Fast Heuristic

Search for RTS Game Combat Scenarios. In

Proceedings of the Artificial Intelligence and

Interactive Digital Entertainment (AIIDE); AAAI

Press: Palo Alto, CA, USA, 2012, pp. 112-117

7. Ontañón, S. The combinatorial multi-armed bandit

problem and its application to real-time strategy

games. In Proceedings of 9th Artificial Intelligence

and Interactive Digital Entertainment Conference

(AIIDE); AAAI Press: Palo Alto, CA, USA, 2013.

8. Shleyfman A, Komenda A, Domshlak C. On

Combinatorial Actions and CMABs with Linear

Side Information[J]. Frontiers in Artificial

Intelligence & Applications, 2014, 263:825-830.

9. Buro, M. (2015). Adversarial hierarchical-task

network planning for complex real-time games.

International Conference on Artificial Intelligence

(Vol.8, pp.1652-1658). AAAI Press.

10. Kovarsky, A., & Buro, M. (2005). Heuristic search

applied to abstract combat games. Lecture Notes in

Computer Science, 3501, pp. 66-78.

11. TungDucNguyen, KienQuangNguyen, & Ruck, T.

(2015). Heuristic search exploiting non-additive and

unit properties for rts-game unit micromanagement.

Journal of Information Processing, 23(1), pp. 2-8.

12. Stanescu, M., Hernandez, S. P., Erickson, G.,

Greiner, R., & Buro, M. (2013). Predicting army

combat outcomes in StarCraft. AAAI Conference on

Artificial Intelligence and Interactive Digital

Entertainment (pp.86-92). AAAI Press.

13. Erickson, G., & Buro, M. (2014). Global state

evaluation in StarCraft. Tenth AAAI Conference on

Artificial Intelligence and Interactive Digital

Entertainment (pp.112-118). AAAI Press..

14. Uriarte, A., & Ontañón, S. (2014). Game-tree search

over high-level game states in RTS games. AIIDE.

pp.73-79.

15. Bakkes, S., Spronck, P., & Herik, J. V. D. (2013).

Phase-dependent evaluation in rts games.

16. Li, Y. J., Ng, P. H. F., & Shiu, S. C. K. (2015). A

fast evaluation method for rts game strategy using

fuzzy extreme learning machine. Natural

Computing(3), pp. 1-13.

17. Stanescu, M., Barriga, N. A., Hess, A., & Buro, M.

(2017). Evaluating real-time strategy game states

using convolutional neural networks. Computational

Intelligence and Games. IEEE.

18. Malik Ghallab, Dana Nau, Paolo Traverso.

Automated Planning: Theory and Practice. 2008.

Elsevier(Singapore) Pte.Ltd.

19. Sacerdoti, E. D. (1975). The nonlinear nature of

plans. International Joint Conference on Artificial

Intelligence (pp.206-214). Morgan Kaufmann

Publishers Inc.

20. David Churchill. [D]. Heuristic Search Techniques

for Real-Time Strategy Games. University of

Alberta. 2016.

6

MATEC Web of Conferences 208, 05003 (2018) https://doi.org/10.1051/matecconf/201820805003
ICMIE 2018

