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Abstract. Depth estimation has achieved considerable success with the development of the depth sensor 

devices and deep learning method. However, depth estimation from monocular RGB-based image will 

increase ambiguity and is prone to error. In this paper, we present a novel approach to produce dense depth 

map from a single image coupled with coarse point-cloud samples. Our approach learns to fit the distribution 

of the depth map from source data using conditional adversarial networks and convert the sparse point clouds 

to dense maps. Our experiments show that the use of the conditional adversarial networks can add full image 

information to the predicted depth maps and the effectiveness of our approach to predict depth in NYU-Depth-

v2 indoor dataset.   

1 Introduction 

Depth estimation is a central problem to many industrial 

applications, such as simultaneous localization and 

mapping (SLAM), robotic systems, autonomous driving 

and augmented reality (AR). Recently, many literatures 

have utilized single RGB image to predict the depth due 

to the low-cost and practical value [1, 2]. Nevertheless, 

the monocular image depth estimation has its own 

limitation and is a well-known ill-posed problem, since 

the colour pixel in the image has inherent ambiguity to 

map as a depth value. And the current methods are far 

away from practical usage and low accuracy and 

unreliability of the single image depth estimation fail to 

apply to robotic utilizations such as obstacle detection. 

Thanks to the invention of the depth sensors including 

LIDAR, stereo camera and time-of-flight based depth 

camera, we have some devices to directly measure the 

depth of the environment. However, such depth sensors 

have their own drawbacks: the limited scope, light 

sensitivity, high price for high depth accuracy about time-

of-flight based depth camera (e.g. Kinect v2), and high-

cost, extreme low resolution (with only a few lines 

resolution in vertical direction. E.g. Velodyne VLS-128) 

about LIDAR. As for stereo cameras, careful calibration 

and large amount of computation are required for precise 

estimation, which usually fails to estimate under certain 

circumstances. Owing to such disadvantages, we describe 

an approach based on conditional Generative Adversarial 

Network (GAN) to reconstruct the depth map to high 

resolution with the limitation of the depth sensors. 

In this situation, we consider whether additional depth 

information can increase the depth accuracy and reduce 

the ambiguity. So, the goal of this paper is to reconstruct 

high resolution depth map from coarse point cloud and 

single RGB image, and we can get coarse depth point 

from low-cost LIDARs (e.g. Velodyne VLP-16), SLAM 

or visual-based odometry methods. In this paper, we 

introduce a conditional GAN to convert the sparse depth 

map to dense depth image like image-to-image translation. 

Conditional GAN learn a conditional generative model 

that tries to classify whether the image input is true or fake, 

and the effect of the blur can be weakened because of the 

dissimilarity among the real depth images and generated 

depth images. The main contribution of this paper are as 

follows. We construct a conditional GAN to reconstruct 

the high-resolution depth image from a single image 

additional with sparse depth points. And we conduct our 

experiments on NYU-Depth-v2 indoor dataset and 

demonstrate the effectiveness and potential usage of our 

depth estimation method. 

 
Figure 1. We propose conditional GAN for depth estimation 

from monocular RGB image and sampled sparse point cloud. 

Our method shows the effectiveness of the depth estimation. 

2 Related work  

2.1 Depth estimation from monocular images 
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Figure 2.  Generator network architecture 

 

These days, with the development of convolutional neural 

network (CNN), depth estimation using single image has 

experienced a strong interest in both computer vision and 

robotic field. Deep learning-based method are proved to 

be more sufficient comparing to the traditional 

approaches, such as graphical models and hand-crafted 

features [3, 4]. Eigen et al.[5] first developed a multiscale 

convolutional neural network to learn three different tasks 

including depth prediction from a single image. The 

network regressed depth values from the input RGB-

based image and caught many image details to investigate 

the validity of the depth prediction. Liu et al. [6] presented 

a deep convolutional neural field model combining the 

capacity of deep CNN with continuous conditional 

random field (CRF) to estimate depths from single 

monocular images. 

 More recently, Cao et al. [8] and Laina et al. [7] dealt 

with the problems by using Residual Neural Network 

(ResNet) [14]. Cao et al. converted depth estimation task 

to a pixel-wise classification task, while Laina et al. 

trained an end-to-end network to learn up-sampling 

feature maps without the help of refinement and post-

processing approaches like CRF respectively.  

2.2 Depth reconstruction with additional sparse 
samples 

The advanced depth sensors invented in recently time 

inspire many researchers to predict dense depth maps 

from coarse point clouds. For example, Liao et al. [9] 

introduced 2D laser range data to construct a dense 

reference map by ResNet and combined the regression 

loss and classification loss to improve the depth accuracy. 

Ma. and Karaman. [10] learned directly from monocular 

image and additional sparse depth samples by a single 

regression network for depth prediction in scenes. 

2.3 Conditional GAN 

Another field of related work is Conditional GANs [11]. 

Our model utilizes conditional GAN to reconstruct dense 

depth map from RGB images and coarse depth points, and 

there are some other works use conditional GANs on label  

[11], text [13] and images. Ledig et al. [12] used 

conditional GANs for super-resolution on photo-realistic 

natural images. And Isola et al. [14] presented conditional 

adversarial networks to solve image-to-image translation 

problems such as reconstructing objects by edge maps and 

synthesizing images. Unlike previous work, we learn the 

mapping between the single image additional with coarse 

depth sample and dense depth image by conditional GAN. 

3 Methodology  

Our conditional GAN models learn a mapping from image 

x, sampled depth points d, and random noise vector z to 

dense depth image y: G: {x, d, z} →y. The generator is to 

produce images as similar as possible to the real images 

and cannot be distinguished by discriminator, while the 

discriminator is to detect whether the image is real or fake. 

In this section, we describe our depth point sample 

method, the architecture of our conditional GAN and the 

training stage. 

3.1. Depth Point Sampling  

In this part, we introduce the how we create the sparse 

depth point from the ground truth. In order to sample 

randomly in the depth ground truth, we design a 

probability model to get the sample points. For any target 

pixel, we calculate the Bernoulli probability p =
𝑛

𝑚
, 

where m is the total number of the depth points, and n 

represents the number of the pixel we consider as the 

training data. And the formulation of any pixel (i, j) in 

image is as follows. 

        𝐷(𝑖, 𝑗) = {
𝐷∗(𝑖, 𝑗),   𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑝

0,   𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝑝)
         (1) 

Where 𝐷∗(𝑖, 𝑗) is the real depth in ground truth on 

pixel (𝑖, 𝑗). By such sampling approach, we can get the 

sparse depth point cloud differently in each training step, 

and the points are uniformly distributed in the image. So, 

we can increase the robustness of our model using such 

sampled points as our training data. 

 

MATEC Web of Conferences 175,  (2018) https://doi.org/10.1051/matecconf/2018175
IFCAE-IOT 2018

03055 03055

2



 

 3.2 Network Architecture 

Our network includes a generator and a discriminator, and 

both of them follows the modules that contains 

Convolution-BatchNorm-Relu layers. Figure 2 shows the 

overall architecture of our model and the details of the 

architecture are discussed below. 

3.2.1 Generator with skips  

The goal of our generator is to map the low-resolution 

depth point clouds with a supplementary information 

about single RGB image to high resolution depth images. 

In this area, we design an encoder-decoder network to 

reach our aim. Our encoder part is developed based on 

CNN architecture with a kernel size of 3-by 3. Many 

previous methods have exploited ResNet Block [14] to 

down sample the input image and produced feature maps 

in different scales. Since there are some low-level features 

shared between the input and output images, we design to 

introduce such information directly to the up-sample 

layers. Thus, we add a skip connection between the down-

sample layers and up-sample layers to avoid the 

bottleneck layer information, following the architecture 

‘U-net’ [15]. As for decoder part, our model contains 5 

up-sample layers including deconvolution, BatchNorm, 

Relu and dropout layers. 

3.2.2 Discriminator  

Since the L1 and L2 loss produces burry results on image, 

we design a discriminator architecture to reduce such 

effect. In spite of the failure in strengthening the high 

frequency features in images, L1 loss can encourage the 

low frequency features in images. Therefore, we create a 

discriminator network to punish the high frequency 

dissimilarity and try to classify whether the image is real 

or fake. Our discriminator architecture is much smaller 

than the generator architecture, only contains a few 

convolutional layers. 

3.3 Training stage  

The full objective of our model can be described as 

follows. 

𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) = 𝐸𝑥,𝑦~𝑃𝑑𝑎𝑡𝑎(𝑥,𝑦)[𝑙𝑜𝑔𝐷(𝑥, 𝑦)] +

𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥),𝑧~𝑃𝑧(𝑧)[𝑙𝑜𝑔 (1 − 𝐷(𝑥, 𝐺(𝑥, 𝑦))]                 (2) 

And we add a more traditional pixel-level content loss, 

for example L1 loss, to this model and increase the 

performance of our model by making our generated image 

similar to the target images. Thus, our generator creates 

the images not only to fool the discriminator, but also to 

be as near as possible to ground truth in an L1 loss 

distance. 

𝐿𝐿1(𝐺) = 𝐸𝑥,𝑦~𝑃𝑑𝑎𝑡𝑎(𝑥,𝑦),𝑧~𝑃𝑧(𝑧)[‖𝑦 − 𝐺(𝑥, 𝑧)‖1]    (3) 

Our final model is expressed as follows. 

𝐺∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝜆𝐴𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) + 𝜆𝐵𝐿𝐿1(𝐺)     (4) 

Where discriminator D tries to maximize the GAN 

loss, while the generator G tries to minimize the objective 

against D. 𝜆𝐴 and 𝜆𝐵 controls the relative weights of the 

two parts. 

4 Experiments  

We implement our model in python 3.4 and cuDNN 6.0 

using pyTorch [16] and use NYU-Depth-v2 dataset to 

train our model. As for training, we use an NVIDIA 

TITAN xp with 12GB memory. The batch size of our 

model is 2. Different to the image-to-image translation 

problem, the model is not expected to produce uncertain 

depth value in the image. So, we increase the weight of 

L1 loss leading to the low relative weight on GAN loss. 

After numerous trials our model preforms well when 

𝜆𝐴=1, 𝜆𝐵=1000. The initial learning rate of our model is 

0.002. We use this learning rate in the first 150 epochs, 

and slightly decay to zero in the next 250 epochs. 

4.1 Evaluation metrics  

In this section, we introduce the evaluation metrics for our 

approach. The standard metrics for depth estimation 

evaluation are Root Mean Squared Error (RMSE), Mean 

Absolute Relative Error (MARE) and the percentage 𝛿𝑖 of 

the estimated pixels whose relative error are in a threshold 

𝛿𝑘.  

RMSE:         √
1

𝑁
∑ (𝑦𝑖̅ − 𝑦𝑖)2𝑁

𝑖                      (5) 

                     MARE:            
1

𝑁
∑

|𝑦𝑖̅̅̅−𝑦𝑖|

𝑦𝑖

𝑁
𝑖                             (6) 

                            δi :           
{𝑚𝑎𝑥(

𝑦𝑖̅̅̅̅

𝑦𝑖
,   

𝑦𝑖
𝑦𝑖̅̅̅̅

)<𝛿𝑘}

{𝑦𝑖}
                      (7) 

where 𝑦𝑖̅  and 𝑦𝑖  represent the predicted depth value 

and ground truth depth value respectively. And in 

threshold 𝛿𝑖, δ = 1.25 and k = 1, 2, 3. 

4.2 Results  

NYU-Depth-v2 dataset consists of RGB image and depth 

images captured by Microsoft Kinect on 464 different 

indoor scenes. We use 300 of the scenes for training and 

164 of the scenes for testing. And Figure 3 shows some 

examples of our results. (a), (b), (c) are RGB images, 

coarse depth point cloud images and ground truth depth 

maps separately. And Figure 3 (d) are our depth prediction 

results.  
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(a) RGB image                 (b) coarse depth points              (c) ground truth                     (d) prediction 

Figure 3.  Depth prediction outputs of our method on NYU-Depth-v2 indoor dataset. 

 

In the evaluation part, we first present the performance 

of our method with different pixel-level content loss, such 

as L1 loss, L2 loss and smooth L1 loss, we compare the 

result on different content loss with the fixed number of 

sampled points (200 points). In order to compare the loss 

function, we use the same generator network architecture 

and the same weights of the ratio between the adversary 

loss and the content loss. Then we evaluate the relations 

between the number of the depth samples and the depth 

map estimation accuracy. We train a network for each 

different input number of depth samples and optimize 

each sampled number separately. 

The conditional GANs are trained with an RGB image 

an average of 200 depth sampled points. The results are 

listed on Table 1 and Figure 4 and we compare our method 

with the existing approaches. From Table 1 we know that 

our method is better than the prior approaches using RGB 

images only and outperforms the previous method using 

225 depth points on RMSE, MARE and the percentage 𝛿𝑖. 

And we can also learn that the L2 loss and Smooth L1 loss 

will add the blurry to the depth images and cannot perform 

as well as using L1 loss. 

Table 1. The comparison of different methods and different 

loss functions  

Samples Method RMSE MARE 𝛿1 𝛿2 

0 Roy et al. 

[17] 

0.744 0.187 - - 

0 Eigen et al. 

[5] 

0.641 0.158 76.9 95.0 

0 Laina et al 

[7] 

0.573 0.127 81.0 95.3 

225 Liao et al. 
[9] 

0.442 0.104 87.8 96.4 

200 Ours-L1 

loss 

0.256 0.046 98.3 99.7 

200 Ours-L2 

loss 

0.943 0.572 99.5 99.6 

200 Ours-

smoothL1 

loss 

1.278 0.726 95.7 95.8 

In the next step, we compare the impact on the number 

of the depth sample points. We express the relationship 

between the number of the sampled depth points and the 

depth images estimation accuracy. From Figure 4 we can 

conclude that with the increase of the number of depth 

points input to the network, the depth prediction accuracy 

of the depth maps has raised, and the error has rapidly 

diminished.  And we can see from the figure that our 

RMSE when a set of 1000 the depth sampled points are 

inputted to the network, the RMSE can decrease to 0.2m. 

Thus, our method can be applied on LIDAR super-

resolution tasks as well as SLAM odometry algorithms. 

 

 
Figure 4.  The influence of the number of the sampled depth 

points on the evaluation metrics 

5 Conclusions  

In this paper, we introduce a novel depth estimation 

method for dense depth maps from monocular RGB 

images and coarse depth point clouds. By offering 

supplementary information of sparse depth point value, 

our approach can relieve the ambiguity and unreliability 

of the methods predicting depth from single RGB images. 

And by using the conditional GAN, our approach can 

reduce the obscure depth values produced by regression 

model. We conduct the experiments on NYU-Depth-v2 
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indoor dataset, and our experiments shows the 

effectiveness of our method. We demonstrate our method 

can outperform many other depth estimation method and 

can be used to many engineering applications such as 

SLAM and robotic systems. 
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