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Abstract. In this paper, a state observer design for a walking in-pipe robot is studied. The necessity of 
using a state observer is related to the fact that sensors have limited accuracy and are prone to producing 
noise. This is especially problematic for in-pipe walking robots, since they use model-based control and 
require accurate information of their current state. The paper shows that an iterative state observer based on 
solving Riccati equation provides significant improvements in the behaviour of the control system. It allows 
to smooth out the spikes in the control actions requested by controller and to minimize tremor of the robot 
links. In order to study the behaviour of the observer when different sensors are used, a performance 
function was introduced. It was shown that the observer allows to improve the performance of the control 
system for a wide range of sensor parameters. Additionally, it was shown that the introduction of the 
observer allows to choose higher feedback controller gains, enabling more precise control. Simulations on 
the full robot model, taking into account mechanical constraints and contact forces showed that the linear 
observer is capable of improving the behaviour of the control system of the walking robot, if measurements 
of the reaction forces are provided. The effects that the noise and quantization in the reaction forces 
measurements have on the behaviour of the state observer is studied. 

1 Introduction  
Pipeline inspection robots are complex electro-
mechanical systems that are designed to move inside 
pipelines while carrying necessary equipment. Popular 
in-pipe robot designs feature parallel linkages with 
wheels or tracks [1-4]. Some other designs include 
flexible links, pneumatic or Bowden cable activation, 
serial linkages designs (such as snake-like robots), multi-
module designs, etc. [5-7]. This diversity and complexity 
is the result of the diversity and complexity of the tasks 
posed for this type of robots and reflects the advances in 
the field of in-pipe robotics. 

Currently, in-pipe robot designs have been able to 
solve a number of mobility tasks, however the problem of 
navigating pipelines has not been completely solved yet. 
In part, this is due to the diversity of the mobility tasks 
the in-pipe robots face. For example, pipelines can have 
significant changes in diameter, vertical sections, L-
shaped and U-shaped turns, Y-shaped and T-shaped 
junctions and other features that make it difficult to 
navigate for most of the known robot designs. This 
motivates the use of more agile robot designs, such as 
walking in-pipe robots [8-10]. 

All types of in-pipe robots require solving a number 
of sensor-related challenges. These include estimation of 
the robot’s position and configuration, navigation and 
mapping. Some of the sensor-related problems are 
common for all types of multilink robots, and arise due to 
the fact that real sensors are characterized by 
quantization, discretization, noise, time lag and other 
strongly nonlinear behavioural features. Estimating the 

configuration of walking in-pipe robots is an additionally 
challenging problem because of their structure, which 
features multiple serial linkages connected to the floating 
body (for the terminology see [11]). Since calculating the 
positions of links at the end of a sequential kinematic 
chain requires measurements of a number of joint 
parameters (angles or linear displacements), the nonlinear 
behaviour of the joint sensors will manifest significantly 
in these calculations. Incidentally, the contact elements of 
walking in-pipe robots, whose trajectories need to 
controlled [12-15], are located at the ends of sequential 
kinematic chains and therefore their positions are hard to 
infer exactly. This motivates the use of special 
configuration estimation algorithms. 

There are a number of methods that can be used for 
configuration estimation (or state estimation). For linear 
systems, state observers can be used. In papers [16-18] 
state observers had been used to control DC motors, 
underwater robots and wheeled mobile robots. This 
shows that although these methods are developed for 
linear systems, they can be used for nonlinear mechanical 
systems as well. This is similar to how linear control 
methods, such as linear quadratic regulator, can be used 
to control robots with nonlinear dynamics (see [19-21] 
for examples). In this paper, we look at the use of linear 
state observer to provide predictions for joint parameters 
of an in-pipe robot. 

The rest of the paper is organized as follows. The 
section 2 provides description on an in-pipe walking 
robot which is used in the numerical studies. The section 
3 discusses the observer design, and sections 4 and 5 
show the work of the observer in simulation. 
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2 Walking in-pipe robot description 
In this paper, we consider an in-pipe walking robot with 
nine links. One of the links is called “body” and other 
links are organized into pairs and are connected to the 
body in a serial manner. The robot is shown in figure 1. 

 
Fig. 1. Diagram of the in-pipe walking robot. 

The diagram in fig. 1 uses the following notation. iD  
and iE  are active joints, iK  are contact elements, iϕ  are 
joint angles, 1x  and 1y  are axes of a local coordinate 
system, attached to the robot’s body and C  is the center 
of mass of the robot’s body. 
In the following sections, we will consider one of the 
robots legs separately from the rest of the device. 
Assuming that the robot’s body remains stationary, we 
can introduce a vector of generalized coordinates that 
describes the configuration of one of the robot’s legs: 

 1 2[ ] .q ϕ ϕ Τ=  (1) 

Using this generalized coordinates we can describe 
robot’s dynamics in the following way: 

 0+ =Hq c τ , (2) 

where H  is the generalized inertia matrix, 0c  is a bias 
vector and τ  is a generalized motor torques (see [22] for 
terminology, derivations and practical algoriths for 
generating these equations). These equations can be 
linearized in the following way: 

 = + +x Ax Bu c , (3) 

where [ ]Τ Τ Τ=x q q  is a vector of state coordinates, 
=u τ , = ∂ ∂A f x , = ∂ ∂B f u  and = − −c f Ax Bu  are 

constant linearization matrices and vectors calculated at a 
given point 0x  and 1

0( )−= −f H τ c  is the function 
describing the dynamics of the robot. 

The robot is controlled by a computed torque controller 
(CTC), which is given by the following control law: 

 *
0( )d p= + + +τ H q K e K e c  , (4) 

where *q  is the desired value of the generalized 

coordinates, *= −e q q  is the control error and pK  and 

dK  are gain matrices. The use of this controller is 
discussed in [23] and the tuning of the gain matrices is 
studied in [24-25]. 

3 State observer design 
The idea behind a state observer is to predict the actual 
evolution of the state coordinates of the robot given a 
model of the robot dynamics and possibly incorrect 
measurements of the state coordinates. Let us introduce a 
vector of state coordinate predictions z . We define the 
observer dynamics as follows: 

 ( )= + + + −z Az Bu c L x z , (5) 

where L  is a gain matrix of the observer. In order to find 
the optimal gain matrix we can define = −e x z , subtract 
(5) from (3) and simplify to get: 

 
= +

 = −

e Ae Iu
u Le


, (6) 

where I  is an identity matrix. This suggests that the 
optimal gain matrix L  can be computed by solving the 
Riccati equation, same as it is done in linear quadratic 
regulator design. Examples of how this is done can be 
found in [20-21]. The weight matrices that appear in the 
Riccati equations are chosen to be identity matrices in all 
experiments shown in this paper. 

If the mechanical system has explicit mechanical 
constraints imposed on it, the observer dynamics equation 
can be modified as follows: 

 ( )Τ= + + + + −z Az Bu F λ c L x z , (7) 

where F  is the constraint Jacobian taken with respect to 
the state coordinates x  and λ  is a vector of Lagrange 
multipliers that are equivalent to reaction forces. Values 
of λ  can me read from force sensors, and they are subject 
to measurement errors. 

Thus, the observer is given by the update law (5) or (7), 
where the gain matrix is obtained by solving the Riccati 
equation for the dynamical system (6). For nonlinear 
system this is done iteratively, by linearizing the system 
along the path that the system follows in the state space. In 
order to prevent the erroneous values of sensor 
measurements from appearing in the dynamics model 
during linearization, the model can be linearized along its 
desired (rather than actual) trajectory in the state space. 
This is what is done in all experiments shown in this paper. 

4 Simulation results 
In this section, we study the behaviour of a single leg of 
the walking in-pipe robot, taking into account the 
nonlinear effects of the joint sensors. In particular, we 
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model sensor quantization and sensor noise. The sensor 
model is then given as follows: 

 ( mod ) ( , )x x x r cσ δ= − + , (8) 

where x  is the measured value of x , ( mod )x σ  is 
remainder after division of x  by σ  and ( , )r c δ  is a 
random number that has a flat distribution in the 
interval [ 0.5 0.5 ]c cδ δ− + . Figure 2 shows the sensor 
output during a single robot step for the case when 

0c = , 0.05δ =  and 0.05σ =  for both position and 
velocity sensors. 

 
Fig. 2 The measured values of φ2(t). 

As we can see, the measured value of joint angle 
increases by visible increments, and the noise levels are 
so high that they make it difficult to determine the time 
when the increments took place. Expression (4) 
suggests that the nonlinearities in ( )tϕ  translate to 
nonlinearities in ( )tτ . Figure 3 shows the generalized 
torques ( )tτ  obtained for the case discussed above. 
This and the following simulations are done with 

1000p =K I  and 100d =K I , where I  is a 2-by-2 
identity matrix. 

 
Fig. 3. The obtained values of τ1(t) and τ2(t) for the experiment 
with sensor noise and quantization. 

Figure 3 shows that the torques change rapidly, 
possibly faster than is possible for some motor types. 
This illustrates another reason why state estimation is 
important, since it is needed to prevent the control 
system from requesting impossible behaviour from the 
robot motors. 

Let us study how the behaviour of the controller 
changes when the state observer (5) is introduced. Figure 
4 shows the time functions ( )tτ  for this case. 

 
Fig. 4. The obtained values of τ1(t) and τ2(t) for the experiment 
with sensor noise and quantization, with the state observer used. 

As we can see, for this experiment the time functions 
( )tτ  requested by the controller are smooth, which 

suggests that the state observer works well. To make this 
observation more quantitative, let us introduce a cost 
function J: 

 * * * *[( ) ( ) ( ) ( )]J dtΤ Τ= − − + − − x x Q x x u u R u u , (9) 

where *x  is the desired value of x  and *u  is the value of 
u  found using inverse dynamics and Q  and R  are 
weight matrices of the additive quadratic cost J. In the 
following experiments we use the weights 1=Q  and 

0.1=R . 
Let us study the cost J as a function of the sensor 

resolution σ . Figure 5 shows this graph for the case 
when observer is not used. 

 
Fig. 5. Dependence of J on sensor resolution σ (without using 
the observer, c=0, δ=0.05) 

As we can see, the cost function steadily grows as σ  
increases (the sensor resolution falls). This can be 
expected from the shape of the graphs shown in Figure 3. 
The same dependence for the case when the linear 
observer is used is shown in Figure 6. 

 
Fig. 6. Dependence of J on sensor resolution σ (with using the 
linear observer, c=0, δ=0.05). 
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Figure 6 shows that introducing the state observer 
improves the cost. When the state observer is used, the 
cost does not exceed 0.05, whereas previously the cost 
was reaching values of 0.15. 

We should note that in all experiments shown here the 
parameter c was chosen to be equal to zero. Experiments 
with different values of c, such as 0.01, showed the same 
results, and thus were omitted from this paper for 
conciseness. 

Let us study how the noise levels affect the 
performance of the system with and without observer. 
Figure 7 shows both dependencies. 

 
Fig. 7. Dependence of J on sensor noise δ (with the linear 
observer, c=0, σ =0.05). 

Figure 7 demonstrates that the cost increases with the 
noise level when observer is not used, while introducing 
the observer makes the performance of the system 
seemingly independent from the noise. 

It is well known, that high gain feedback control is 
more sensitive to sensor noise and measurement 
inaccuracies, compared with low gain feedback. In order 
to study this relation we fix the sensor parameters at 

0c = , 0.05δ =  and 0.05σ = , and vary gain matrices 
p pk=K I  and d dk=K I , while changing scalar 

coefficients pk  and dk . Figures 8 and 9 illustrate the 

dependence of J on the scalar coefficients pk  and dk  for 
cases with and without observer. 

 
Fig. 8. Dependence of J on scalar coefficients kp and kd (without 
observer, c=0, δ=0.05, σ =0.05). 

Figure 8 shows that there exists a minimum value of 
J, obtained at pk =160 and dk =150. The optimal value 

of J for that surface is 37.5 10−⋅ , while the mean value is 
0.023. Increasing the values of the gain coefficients pk  

and dk  worsens the performance of the system. This is 
an undesirable result, as higher controller gains allow 
higher motion precision. 

 
Fig. 9. Dependence of J on scalar coefficients kp and kd (with 
linear observer, c=0, δ=0.05, σ =0.05). 

Figure 9 shows that introducing the linear state 
observer allows to negate this problem, improving the 
performance of the system when the controller gains are 
high. The mean value of J for that surface is 0.011. 

5 Simulations on a full scale robot 
In this section, we present simulation results for the full 
robot model. This model takes into account mechanical 
constraints and the reaction forces that arise from them. 
In these experiments LQR-based controller discussed 
in [26] is used. Figure 10 shows the generalised velocities 
for the front legs of the robot for the case when 0c = , 

0.05δ =  and 0.05σ = .  

 
Fig. 10 Time functions for the generalized velocities for the full 
robot model (without observer, c=0, δ=0.05, σ =0.05). 

As we can see, the robot exhibits high frequency 
oscilations. This reflects the fact that the chosen LQR-
based controller was tuned to produce high feedback 

4

MATEC Web of Conferences 161, 03012 (2018)	 https://doi.org/10.1051/matecconf/201816103012
13th International Scientific-Technical Conference on Electromechanics and Robotics “Zavalishin’s Readings” - 2018



 

gains and thus the resulting control law is sensitive to the 
sensor noise. Figure 11 shows the same time functions 
obtained for the experimet with the linear state 
observer (7). The values of λ  are quantized and sensor 
noise is added, same as it is done in (8). The 
corresponding constants cλ , λδ  and λσ  have values 

0cλ = , 0.01λδ =  and 0.01λσ = . 

 
Fig. 11 Time functions for the generalized velocities for the full 
robot model (with the linear observer, c = 0, δ=0.05, σ =0.05). 

As we can see, the observer improved the behaviour 
of the robot, removing the tremor. Let us study how the 
behaviour of the observer depends on the quality of the 
reaction forces measurements. Figure 12 shows the 
dependance of J on the sensor resolution λσ . 

 
Fig. 12 Dependence of J on sensor resolution σ (without using 
the observer, cλ = 0, δλ=0.01). 

Figure 12 demonstrates that the performance function 
does now show dependence on the sensor resolution λσ  
in the chosen range. This is an important result, as it 
encourages the use of the state observer in systems with 
mechanical constraints, where the sensors measuring 
reaction forces have low accuracy. 

We can also observe a significant increase in the 
values of the cost function. This is related to control 
errors, characteristic of the chosen controller. This is 
discussed in paper [14]. 

6 Conclusions 
In this paper, the topic of state observation for in-pipe 
walking robots had been studied. These type of robots 
depend on accurate state information and accurate robot 
models, which should be derived from the erroneous 
sensor data, accessible to the robot. This signifies the 
question of choosing effective state observer. In this 
paper, an interactive linear state observer had been 
studied. 

Simulations of motion of a single leg of the walking 
robot have showed that this type of observer significantly 
improves the behaviour of the control system in the 
presence of sensor noise and data quantization. It was 
demonstrated, that the introduction of the state observer 
allows the use of higher feedback controller gains for the 
case of a computed torque controller.  

Simulations performed on the full robot model 
showed that the introduction of the state observer allows 
similar improvements. However, in order to use the state 
observer on the full robot mode, the information about 
reaction forces need to be included in the observer 
design. The observer demonstrated good performance 
even in the presence of noise and quantization of the 
reaction forces data. 

The following research can be focused on designing a 
an observer for reaction forces and on using the 
information of contact points locations in the state observer 
design. 

 
This work is supported by the Presidential grant MK-

2577.2017.8. 
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