Cleaning Schedule Operations in Heat Exchanger Networks

Hairul Huda¹, Renanto Handogo¹,²*, and Totok Ruki Biyanto²

¹Chemical Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
²Engineering Physics Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Abstract. Heat exchanger networks have been known to be the essential parts in the chemical industries. Unfortunately, since the performance of heat exchanger can be decreasing in transferring the heat from hot stream into cold stream due to fouling, then cleaning the heat exchanger is needed to restore its initial performance periodically. A process of heating crude oil in a refinery plant was used as a case study. As many as eleven heat exchangers were used to heat crude oil before it was heated by a furnace to the temperature required to the crude unit distillation column. The purpose of this study is to determine the cleaning schedule of heat exchanger on the heat exchanger networks due to the decrease of the overall heat transfer coefficient by various percentage of the design value. A close study on the process of heat exchanger cleaning schedule in heat exchanger networks using the method of decreasing overall heat transfer coefficient as target. The result showed that the higher the fouling value the more often the heat exchanger is cleaned because the overall heat transfer coefficient decreases quickly.

1 Introduction

In a refinery plant one can generally find a lot of heat exchangers which are used in series-parallel to heat cold crude oil to a required temperature before it flows to a column furnace to a higher temperature in order that a somewhat perfect separation can be obtained. There can be many configurations from a set of heat exchangers to construct. If we only use hot and cold utilities to exchange the heat between steam/cooling water and process fluid, then we can imagine the huge amount of energy needed to operate the process. A heat integration concept is aimed at reducing energy consumption from hot and cold utilities by exchanging heat between hot streams and cold streams. By using pinch design method, then maximum energy recovery gained from the process will reduce the need of hot and cold utilities, and will also reduce energy cost as well. Figure 1 shows the process in a refinery plant where crude oil are being heated through a series of heat exchangers [1]. There is neither hot utilities nor cold utilities used in the process. There are hot streams available as they are side stream products from pipe still of crude distillation unit. We have one cold stream and seven hot streams which are being heat-matched. Eleven heat exchangers process to process are needed without any heaters and coolers. A delta T minimum of 10°C is given as a constraint due to the physical heat exchangers used. From Figure 1 we have a heat exchanger networks (HEN) where there are four independent heating processes (HE-01, HE-07, HE-09 and HE-10) and seven integrated heating processes (HE-02, HE-03, HE-04, HE-05, HE-06, HE-08 and HE-11). In order to get more understanding how the streams are matched between hot streams and cold streams, a grid diagram is proposed as shown in Figure 2. However, using complete heat integration one can have zero hot and cold utilities with eleven heat exchangers. Since the energy cost outweighs the annual capital cost, the configuration for HEN as given in Figure 2 will be the base case. A fouling problem arises when a heat exchanger operates continuously over time.

2 Process Descriptions

In this process, crude oil from the storage is pumped to HE-01 as cold stream. Its inlet temperature is 32–51°C and its outlet temperature is 72–93°C. The inlet temperature of hot stream is 128–150°C and leaving HE-01 at 61–110°C. For HE-02, the cold stream enters at 72–93°C and leaves at 83–105°C while the hot stream enters at 146–211°C and leaves at 82–115°C. The hot stream of HE-02 is the outlet of HE-06 hot stream. For HE-03, the cold stream enters at 83–105°C and leaves at 99–126°C while the hot stream enters at 137–170°C and leaves at 93–150°C. The hot stream of HE-03 is the outlet of HE-05 hot stream. The cold stream of HE-04 enters at 99–126°C and leaves at 108–139°C while the hot stream of HE-04 enters at 159–240°C and leaves at 110–200°C. The hot stream of HE-04 is the outlet of HE-
08 hot stream. After leaving HE-04, crude oil is sent to desalter to remove salt from the crude oil.

Crude oil from desalter is sent to HE-05 as cold stream. Its inlet temperature is 103–135 °C. The inlet temperature of hot stream is 154–187 °C and leaving HE-05 at 137–170 °C. For HE-06, the cold stream enters at 127–151 °C and leaves at 131–157 °C while the hot stream enters at 162–225 °C and leaves at 146–211 °C. For HE-07, the cold stream enters at 131–157 °C and leaves at 135–163 °C while the hot stream enters at 254–281 °C and leaves at 145–200 °C. The cold stream of HE-08 enters at 135–163 °C and leaves at 149–188 °C while the hot stream of HE-08 enters at 269–296 °C and leaves at 189–217 °C. The hot stream of HE-08 is the outlet of HE-11 hot stream. For HE-09, the cold stream enters at 149–188 °C and leaves at 164–213 °C while the hot stream enters at 269–296 °C and leaves at 189–217 °C. For HE-10, the cold stream enters at 164–213 °C and leaves at 175–241 °C while the hot stream enters at 314–338 °C and leaves at 209–271 °C. The cold stream of HE-11 enters at 314–337 °C and leaves at 281 °C. After leaving HE-11, crude oil is sent to furnace. The outlet temperature of furnace is 350 °C. In this process, there are four independent heating processes (HE-01, HE-07, HE-09 and HE-10) and seven integrated heating processes (HE-02, HE-03, HE-04, HE-05, HE-06, HE-08 and HE-11).

In any process flow sheet, there are several streams that need to be heated and there are some that need to be cooled before entering the next step. For that reason, cooling water is needed to lower the hot process streams while steam is needed for heating the cold process streams. If we only use hot and cold utilities to exchange the heat between cooling water/steam and process fluid, then we can imagine the huge amount of energy needed to operate the process.

A heat exchanger networks (HEN) is an arrangement of heat exchangers; in which cold and hot process streams and hot and cold utility streams interchange energy. The purpose of the HEN is to recover energy from the hot process streams to heat up cold process streams using the least amount of hot and cold utility streams, while achieving specified outlet target temperatures of the process streams [2].

Heat exchangers are devices that provide the transfer of thermal energy between two or more fluids at different temperatures [3]. Traditionally, the heat exchanger performance analysis and simulation are performed using steady-state energy balance across the heat exchanger. The energy balance on the hot and cold fluid together with the heat transfer equation constitute the model of heat exchangers. Under the assumptions that there is no heat loss to the surrounding and the heat loss of hot streams shall be equal to heat gained by cold streams, therefore

\[Q_c = Q_h = m_c c_{p,c} (T_{c,o} - T_{c,i}) = m_h c_{p,h} (T_{h,o} - T_{h,i}) \]

(1)

Where:
- \(m_c \): mass flow rate of the cold fluid (crude oil) (kg/hr)
- \(m_h \): mass flow rate of the hot fluid (kg/hr)
- \(c_{p,c} \): specific heat of the cold fluid (W hr/kg °C)
- \(c_{p,h} \): specific heat of the hot fluid (W hr/kg °C)
- \(T_{c,i} \): inlet temperature of the cold fluid (°C)
- \(T_{c,o} \): outlet temperature of the cold fluid (°C)
- \(T_{h,i} \): inlet temperature of the hot fluid (°C)
For the performance of another heat exchangers use equation below:

\[Q = U A \Delta T_{LMTD} \]

where:
- \(Q \) is the heat duty (W)
- \(U \) is the overall heat transfer coefficient (W/m² °C)
- \(A \) is the heat transfer surface area (m²)

\(\Delta T_{LMTD} \) is the log mean temperature difference (°C)

For another heat exchangers use equation below:

\[\Delta T_{LMTD} = \frac{\left(T_{h,0} - T_{c,0} \right) - \left(T_{h,d} - T_{c,d} \right)}{\ln \left(\frac{T_{h,0} - T_{c,0}}{T_{h,d} - T_{c,d}} \right)} \]

\(\Delta T_{LMTD} \) is defined as the characteristic decrease in overall heat transfer coefficient can be described as:

\[\frac{1}{U_{f(t)}} = \frac{1}{U_c} + R_{f(t)} \]

\(\frac{U_{f(t)}}{1+R_{f(t)}} \) (5)

Where:
- \(R_c \) is fouling resistance (m² °C/W)
- \(U_c \) is the overall heat transfer coefficient clean (W/m² °C)
- \(U_{f(t)} \) is the overall heat transfer coefficient dirt (W/m² °C)
- \(t \) is time (day)

Fouling resistance, \(R_f \) as follows:

\[R_f(t) = R_{f0}(1 - \exp^{-\beta t}) \]

6 Result and Discussion

This section discusses the fouling resistance model, the total of cleaning and the overall heat transfer coefficient model each heat exchanger.

Table 1. Data for \(U_c, R_f \) dan \(\beta \)

<table>
<thead>
<tr>
<th>HE</th>
<th>(U_c)</th>
<th>(R_f)</th>
<th>(\beta) (1/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE-01</td>
<td>678</td>
<td>9,57×10^{-04}</td>
<td>1,99×10^{-02}</td>
</tr>
<tr>
<td>HE-02</td>
<td>483</td>
<td>7,14×10^{-03}</td>
<td>2,26×10^{-02}</td>
</tr>
<tr>
<td>HE-03</td>
<td>583</td>
<td>8,03×10^{-03}</td>
<td>2,96×10^{-02}</td>
</tr>
<tr>
<td>HE-04</td>
<td>359</td>
<td>6,23×10^{-03}</td>
<td>1,74×10^{-02}</td>
</tr>
<tr>
<td>HE-05</td>
<td>487</td>
<td>7,74×10^{-03}</td>
<td>2,14×10^{-02}</td>
</tr>
<tr>
<td>HE-06</td>
<td>649</td>
<td>3,72×10^{-03}</td>
<td>1,94×10^{-02}</td>
</tr>
<tr>
<td>HE-07</td>
<td>148</td>
<td>2,61×10^{-03}</td>
<td>1,67×10^{-02}</td>
</tr>
<tr>
<td>HE-08</td>
<td>357</td>
<td>3,69×10^{-03}</td>
<td>1,48×10^{-02}</td>
</tr>
<tr>
<td>HE-09</td>
<td>540</td>
<td>3,42×10^{-03}</td>
<td>1,51×10^{-02}</td>
</tr>
<tr>
<td>HE-10</td>
<td>640</td>
<td>6,04×10^{-03}</td>
<td>1,22×10^{-02}</td>
</tr>
<tr>
<td>HE-11</td>
<td>465</td>
<td>4,48×10^{-03}</td>
<td>3,46×10^{-02}</td>
</tr>
</tbody>
</table>

\(U_{f(t)} = \frac{U_c}{1+U_c \cdot R_{f(t)}} + \left(\frac{U_c}{1+U_c} \right) e^{-\beta t} \)

(8)

The characteristic and relation between \(U_f \) and \(t \) should be investigated. The value of \(U_f \) varies by \(t \), where \(t \) is production period. Variable \(A \) is determined at initial condition and variable \(B \) is determined at final condition [6].

So we can determine the characteristic of overall heat transfer coefficient \(U \) for one period. The characteristic decrease in heat transfer coefficient \(U \) follows the exponential function as given below:
Fig. 3. Fouling resistance all heat exchanger.

Fig. 4. Cleaning scheduling at HE-01.

In the HE-01 with initial value $U_c = 678$ (W/m2 °C), U_f at 360 days fouled condition value was 411.51 (W/m2 °C) and U_f at 80% value was 542.4 (W/m2 °C). The total of process cleaning 6 times in 360 days, U_f at day 54 value was 544.3245 (W/m2 °C) and first process cleaning at day 55 in the HE-01.

Fig. 5. Cleaning scheduling at HE-02.

In the HE-02 with initial value $U_c = 483$ (W/m2 °C), U_f at 360 for fouled condition 108.674 (W/m2 °C) and U_f at 80% value was 386.4 (W/m2 °C). The total of process cleaning 15 times in 360 days, U_f at day 19 value was 390.8917 (W/m2 °C) and first process cleaning at day 14.

Fig. 6. Cleaning scheduling at HE-03.

In the HE-03 with initial value $U_c = 583$ (W/m2 °C), U_f at 360 for fouled condition 102.675 (W/m2 °C) and U_f and at 80% value was 466.4 (W/m2 °C). The total of process cleaning 20 times in 360 days, U_f at day 13 value was 471.4086 (W/m2 °C) and first process cleaning at day 14.

Fig. 7. Cleaning scheduling at HE-04.

In the HE-04 with initial value $U_c = 359$ (W/m2 °C), U_f at 360 for fouled condition 111.521 (W/m2 °C) and U_f and at 80% value was 287.2 (W/m2 °C). The total of process cleaning 10 times in 360 days, U_f at day 30 value was 289.461 (W/m2 °C) and first process cleaning at day 31.

Fig. 8. Cleaning scheduling at HE-05.

In the HE-05 with initial value $U_c = 487$ (W/m2 °C), U_f at 360 for fouled condition 102.328 (W/m2 °C) and U_f and at 80% value was 389.6 (W/m2 °C). The total of process
cleaning 14 times in 360 days, U_f at day 20 value was 390,760 (W/m² °C) and first process cleaning at day 21.

In the HE-06 with initial value U_c 649 (W/m² °C), U_f at 360 for fouled condition 190,784 (W/m² °C) and U_f and at 80% value was 519.2 (W/m² °C). The total of process cleaning 11 times in 360 days, U_f at day 26 value was 523,321 (W/m² °C) and year first process cleaning at day 27.

In the HE-09 with initial value U_c 540 (W/m² °C), U_f at 360 for fouled condition 191,761 (W/m² °C) and U_f and at 80% value was 432 (W/m² °C). The total of process cleaning 8 times in 360 days, U_f at day 47 value was 434,750 (W/m² °C) and first process cleaning at day 39.
In the HE-11 with initial value U_c 465 (W/m² °C), U_f at 360 for fouled condition 150,93 (W/m² °C) and U_f and at 80% value was 372 (W/m² °C). The total of process cleaning 17 times in 360 days, U_f at day 16 value was 372,154 (W/m² °C) and first process cleaning at day 17.

7 Conclusions

Scheduling for cleaning is required by looking at the decrease of U over time especially when the value of B is high enough that U will decrease very fast. Smaller values of B is then required when heat exchangers are kept in operation. In other words, infrequent cleaning operation can be implemented. Process cleaning scheduling by decrease U_c at value 80% can be implemented and give result process cleaning frequently.

We thank DIKTI for the financial support through (Penelitian Terapan Unggulan Perguruan Tinggi) PTUPT Project No. 582/PKS/ITS/2017.

References