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Abstract. This work presents an algorithm for calculating the bending 

plates of medium thickness according to the Reissner’. To obtain 

numerical results, the method of successive approximations (MSA) is used. 

This method has high accuracy and fast convergence, which was confirmed 

by the solution of a range of tasks. Publication of the results of the 

calculation of plates of medium thickness with the boundary conditions 

revised here is supposed to be in the following articles.  

1 Introduction 

One of the important sections of the theory of calculation of plates and shells is a section 

related to the calculation of plates of medium thickness. Below is a brief overview of the 

work of recent years in this area. 

In [1], the development of a refined theory of plates using the method of decomposition 

of unknown functions in Legendre polynomials of the transverse coordinate was proposed. 

Isotropic plates under the action of concentrated force effects are considered. In [2] the 

solution for bendable rectangular continuous plates of medium thickness was obtained 

according to the refined theory of B. F. Vlasov. In [3], unsteady deformation of a 

rectangular plate of medium thickness with an oscillation damper mounted on it is 

investigated. In the course of formation the theory of calculation of three-layered 

anisotropic plates with attached masses in work [4] the assumptions for plates of medium 

thickness were taken into consideration within the framework of the theory of 

S. P. Timoshenko. The works [5, 6] are devoted to the formation of the numerical solution 

based on the finite difference method (FDM) in its classical form. In the first of these works 

triangular plates of medium thickness are considered, and in the second work – rectangular 

ones. In [7, 8] the efficiency of application of the generalized FDM equations to the 

calculaton of the plates of medium thickness under static and dynamic loads is shown. A 

simplified approach to the calculation of plates with a free edge is proposed in [9]. 

The difference equations of the method of successive approximations (MSA) are 

applied in [10-13] to the calculation of thin bending plates in the form that allows to take 

into consideration possible discontinuities: of the sought function, its derivatives, and the 

right-hand side of the initial differential equation. 
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The aim of this work is to apply the difference form of MSA to the calculation of plates 

of medium thickness according to the Reissner’s theory. 

2 Calculation Methodology 

As the initial equations, we use differential equations of plate bending, considering the 

influence of shear deformations and the effect of normal stress σz [14]: 
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where 

W – vertical displacement of the median plane; 

ψ – stress function; 

q – intensity of a transverse load distributed according to an arbitrary function; 

d – plate thickness; 

υ – Poisson's ratio; 

D – cylindrical rigidity. 

Equations (1) and (2) can be written in the form of a system of three second-order 

differential equations with dimensionless variables and P = const: 
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; 

q0 – intensity of the distributed load at a particular point of the plate; 

a, b – plate dimensions. 

The difference approximation in the MSA of the differential equation (3) follows as a 

special case from equation (2) of [12] for 0     ; 1   . It can be written for 

the rectangular mesh ( 1 2 1 2h h h     ) and continuous m as: 
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where 

h – step of the mesh; 

,

I II

i jm
  – value of the finite discontinuity of the derivative 
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 on the border of 

the elements I-II; 

other values of this kind, for example 
, 1

I II

i jP

 , have a similar meaning. 

From the equation (6) taking into account (4) we obtain the difference equation with 
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The upper left indexes in the form of Roman numerals in (6) denote the numbers of the 

elements that form the mesh near the point i,j. 

To approximate (4), it is sufficient to replace m and p in (6) by w and m, respectively. 

The difference analogue of the equation (5) is written with m and p replaced by   and 
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, respectively. The difference approximation of the equation (4) can also be 

written using the MSA for one of the second derivatives of the sought function w [10]: 
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The presence of jumps ,i jm
 and ,i jm

in equations (6) and (7) makes it possible to 

calculate bending plates for discontinuous loads, such as distributed along the line load and 

local load, without condensation the grid near these discontinuities. 

The problem is formulated for the second derivative of the deflection functions w , 

w and the stress function  , followed by the definition of w . 

Let us consider the hinge conditions for fixing the plate at the edge parallel to the axis 

 : 

0  ; 0m  ,       (8) 
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x  – angle of rotation of the cross section about the x axis; 

yM  – bending moment. 

In the case of hinged edges, using the well-known Reissner equation for m , we obtain: 
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where 

Q  – transverse force. 

The derivatives are replaced by the corresponding difference expressions. The equation 

for determining   at the edge point i, j can be obtained using the condition 0  . 

In the case of the free edge of the plate, the boundary conditions are described by the 

following system of differential relations, which follow from the equations for Q , m , 

m : 
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Differentiating expressions for Q , we obtain 
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We use the well-known expressions: 
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Given expressions for the derivatives allow all three conditions on the free boundary to 

be expressed in terms of sought functions w , w ,  . The boundary conditions for the 

remaining edges b  , 0  , a   are written similarly. 

The equations of the compiled algorithm are solved by iterations with the transition 

from one calculation point to another. The Gauss-Seidel method is applied with the use, as 

necessary, of the upper relaxation method (to accelerate the iterative process), which gives 

good convergence and saves machine time. 

3 Example 

The calculations are performed for three kinds of load: 

1) equally distributed over the plate; 

2) distributed along the line; 

3) a local load of the «cross» type, simulating a concentrated force. 

As a matter of the calculation example, a square plate with a hinged support loaded over 

the entire area (Figure 1) is considered. The results of the calculations show the 

convergence of solutions for MSA with increasing number of partitions (Table 1). The 

table also shows the number of iterations required to obtain a solution with a given 

accuracy of 0.01%: a b , 0,1
d

a
 , 1p  , 0,3  . 

 
Fig. 1. Square plate with a hinged support loaded over the entire area. 

 

Table 1. Calculation results 

Step of the 

mesh, h 

Number 

of 

iterations 

w  

(
2

a
  ; 

2

b
  ) 

m  

(
2

a
  ; 

2

b
  ) 

Q  

(
2

a
  ; 0  ) 

1/4 45 0,00423 0,0479 0,3354 

1/8 120 0,00424 0,0480 0,3377 

1/16 480 0,00424 0,0480 0,3380 

Analytical 

solution using 

the series 

- 0,00424 0,0481 0,3370 

The calculation results for the first type of load are given in table 2. Comparison of 

analytical solutions with calculations made using the MSA reveals a coincidence of the 

results. 
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Table 2. Hinged square plate 

d

a
 

Analytical 

method [15] 

Numerical integration 

[16] 

FEM 

[17] 

MSA (mesh 4x4 on a 

quarter of the plate) 

 w  m  w  m  Q  w  w  m  Q  

Classical 

theory 

[18] 

0,00406 0,0479 0,00406 0,0479 0,338 0,00406 0,00406 0,0479 0,338 

0,01 0,00406 0,0479 0,00406 0,0479 0,337 0,00406 0,00406 0,0479 0,337 

0,05 0,00411 0,0479 0,00411 0,0479 0,337 0,00409 0,00410 0,0479 0,337 

0,10 0,00424 0,0481 0,00427 0,0479 0,337 0,00422 0,00424 0,0480 0,333 

0,20 0,00478 - 0,00490 0,0479 0,337 0,00475 0,00477 0,0484 0,339 

0,25 0,00518 - - - - 0,00514 0,00515 0,0487 0,339 

Numerical integration in [16] is performed by segmentation method. In [19], a linear 

approximation and 21x21 grid on a quarter of the plate were used to calculate the plates by 

FEM. The cubic polynomial and the 6x6 grid (on a quarter of a plate) were used to solve 

the FEM in [17]. For problems of bending of jammed and hinged-supported plates, it is 

established that the speed of convergence and accuracy of the results of MSA exceeds 

FEM. 

Given calculations show that the convergence of the numerical solution depends on the 

relative thickness of the plate 
d

a
: the smaller 

d

a
, the slower the convergence and the more 

dense grid should be taken. Similar results are obtained in [19] for FEM, where it is also 

shown that for 0,1
d

a
  the theoretical results are well confirmed by experimental ones. 

On the basis of the developed algorithm, a number of engineering problems can be 

solved in a refined formulation in the sense of taking into account shear deformations. 
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