Ternesite as a component of sulfobelitic cements M.T. Blanco-Varela and P.M. Carmona-Quiroga Instituto de Ciencias de la Construcción Eduardo Torroja, Cements and Recycling Materials Department, Madrid, Spain **Abstract.** The cement industry is presently devoting substantial effort to the development of less energy intensive, lower emission cements. Calcium sulfoaluminate (CSA) cements, one of the most promising alternatives, are known as 'eco-cements' in light of their lower energy costs and GHG emissions. Whilst their clinker composition may vary, all these cements lie in the CaO-A₁₂O₃-SiO₂-Fe₂O₃-CaSO₄ system, with constituent minerals that include C₂A, C₂S, C₁₂A₇, CA, CŜ, and C₄AF. Ternesite (C₅S₂Ŝ), a phase compatible with ye'elemite (C₄A₃Ŝ) and C₂S, can also be found in that system.Recent studies show that it is activated and hydrated in the presence of AH₃ and gypsum, yielding ettringite and C-S-H gel, the main hydration products of CSA and OPC, respectively, as well as C₂ASH₈. This study analyses ternesite reactivity in different aluminate blends. ### 1 Introduction The environmental impact of Portland cement manufacture has prompted the industry to implement a number of strategies geared to lowering energy and natural raw material consumption while reducing greenhouse gas, particularly CO₂, emissions. The use of secondary cementitious materials (SCMs, often industrial by-products), alternative fuels, grinding additives, along with improvements in combustion, heat exchange and grinding technologies have diminished both consumption and emissions with no detriment to binder properties [1]. Another strategy consists in developing calcium sulfoaluminate cements (CSA) based on ye'elemite (C₄A₃Ŝ), a phase initially used to produce expansive cement and subsequently stable high-performance binders. CSA cement manufacture is less energy-intensive (at 1250 °C, the clinkering temperature is 200 °C lower than in OPC) and, depending on the composition, emits 25 % to 40 % less CO₂ than OPC production [2,3]. Whilst not presently used for structural purposes for want of the necessary regulation, these cements are commercialised as components in special mortars and concretes (such as repair or self-levelling concrete, sealing mortar or shotcrete). The composition of the clinker in these cements may differ, although all lie in the $CaO-A_{l2}O_3-SiO_2-Fe_2O_3-CaSO_4$ system and have lower calcium and silicon and higher aluminate and sulfate phase contents than portland cements. The minerals present in the clinker include $C_4A_3\hat{S}$, C_2S , $C_{12}A_7$, CA, $C\hat{S}$ and C_4AF , with a predominance of aluminates [4,5]. Ternesite, $C_5S_2\hat{S}$, a phase formed in the reaction between anhydrite and beliteand compatible with ye'elemite ($C_4A_3\hat{S}$) and C_2S , also lies within this system. Ternesite was found as a natural mineral at Ettringer Bellerberg, near Mayen, Eifel, Germany, in the nineteen nineties. Its synthetic form had been identified earlier, however, as a component of cement [6] or lime [7] kiln crust, the sulphur for which was sourced from the fuel, as well as a minority component in some CSA cements [8,9,10]. Ternesite was chemically, physically, structurally and petrologically characterised between 1960 and 2000 [6, 7, 11-13]. Regarded as a non-hydraulic material [14-15] until it was recently proven to be activated by aluminium hydroxide [16], it has since become a target for research. This paper describes some of the characteristics of ternesite and its hydraulic activation by other mineral compounds. ## 2 Physical and structural characteristics Natural [11] and synthetic ternesite, which are identical, are isostructural with silicocarnotite, $Ca_5(PO_4)_2SiO_4$ [12,13]. The unit-cell parameters of this orthorhombic mineral, Pnma space group crystal are a= 6.863(1) Å, b=15.387(2) Å, c=10.181(1) Å, Z=4. Its structure consists in isolated SiO_4 and SO_4 tetrahedral units connected by octa- or heptahedrally coordinated Ca ions. Both S and Si tetrahedrally coordinated with oxygen occupy different tetrahedral positions in the structure, in which double layers of silicate tetrahedral alternate with a layer of sulphate tetrahedral. Natural ternesite is optically biaxial and negative, with refractive index $n_x = 1.630$, $n_y = 1.637$ and $n_z = 1.640$ and an optical angle, $2V_x = 63.5^\circ$. ## 3 Thermal stability of ternesite $C_5S_2\hat{S}$ thermal stability has been studied by several authors, some of whom position it in a narrow range of temperatures (1100 °C to 1180 °C [16] or 1200 °C to 1298 °C [15]), above which it would decompose further to the equation: $$Ca_5(SiO_4)_2 SO_4 \rightleftharpoons 2Ca_2SiO_4 + CaSO_4.$$ (1) The decomposition temperature depends on whether it is determined in an open (\approx 1180 °C) or closed (1289 °C) system at a total pressure of 1 atm. [17,18]. Similar findings (\approx 1290 °C at 1 atm.) were reported by Hanein et al. [19], who determined the thermodynamic constants of ternesite to lie between 1000 °C and 1400°C, based on previously published vapour pressure measurements of several sulphates obtained between those temperatures [22]. Those studies showed that the vapour pressure of ternesite, like that of anhydrite, rises with temperature, while ternesite exhibits a pressure lower than anhydrite at 1000 to 1290 °C and higher above that range. **Fig. 1.**DTA/TG curves for ternesite, heating (top) and cooling (bottom) The decomposition reaction of ternesite would also depend, then, on the rate of SO₂ loss and for high temperatures could be described by the equation: $$Ca_5(SiO_4)_2 SO_4 \rightleftharpoons 2Ca_2SiO_4 + CaO + SO_2 + \frac{1}{2}O_2,$$ (2) in which ternesite thermal decomposition would be a function of temperature and the partial pressure of SO_2 and O_2 . For a given temperature and partial pressure of O₂(which must always be higher than in SO₂ for SO₃ to form), there is a maximum SO₂ pressure above which ternesite does not form [19]. On the DTA curve (10 °C/min in CO₂-free air), ternesite thermal decomposition induces an endothermal peak at around 1290 °C. As the temperature rises, a second endothermal peak appears due to the fusion of the C₂S-CaSO₄ eutectic, which accounts for 10 %-20 % of the composition of CaSO₄ [18]. Mass loss intensifies on the TG curve at temperatures of over 1200 °C. During cooling, the DTA curve exhibits two exothermal peaks, respectively denoting the solidification of the C₂S-CaSO₄ eutectic (1310 °C) and the α to β polymorphic transformation of CaSO₄ (1175 °C). No signal whatsoever is detected that would indicate new ternesite formation along cooling. FTIR and XRD identify α'C₂S anhydrite (traces of CaO on the XRD pattern), but no ternesite, an indication that at the cooling rate applied (10 °C/min) the decomposition reaction is not reversible. **Table 1.** Minerals forming after ternesite thermal treatment | T (°C) | Time | Phases | |----------|------------|---| | 1315 | 20 min | $\alpha_{L}' C_2 S$; CaSO ₄ ; | | | | CaO | | 1400 | 20 min | $\alpha_{L}' C_2 S$; CaSO ₄ ; | | | | CaO | | 1315 and | 20 min and | $\alpha_{L}' C_{2}S;$ | | 1000 | 24 h | $Ca_5S_2\hat{S}$; CaO | | 1400 and | 20 min and | $\alpha_{L}' C_2 S$; CaSO ₄ ; | | 1000 | 24 h | CaO | The XRD findings for ternesite exposed to different thermal treatments (Table 1) suggest that once it decomposes, its recrystallization depends on the cooling rate and the temperature reached. Recrystallization is possible after reheating to 1000 °C when the temperature reached does not exceed the melting point of the eutectic; otherwise, recrystallization does not appear to occur. According to the literature, ye'elemite, ternesite and anhydrite clinkers at a ratio (by weight) of 1:1:0.5 can be obtained from traditional raw materials or industrial byproducts at temperatures of around 1200 °C [14].Two-stage clinkerización has also been successfully applied to produce such cements, clinkering the raw meal at 1250 °C for 1 h, followed by gradual cooling to 1100 °C and quick cooling below that temperature [10,20,21].Single-stage belite and ternesite-rich calcium sulphoaluminate (BY(F)T) have been obtained at a maximum temperature of 1260 °C in a pilot plant where the partial pressure of O₂ and SO₂was controlled in the kiln [19]. # 4 Compatibility between ternesite and CaO-SiO₂-A₁₂O₃-CaSO₄ system phases The following is a discussion of some of the features of the equilibrium phases of the three subsystems most closely related to the chemistry of cement, namely:CaO-SiO₂-A₁₂O₃; CaO-SiO₂-CaSO₄and CaO-A₁₂O₃-CaSO₄. The equilibrium phases of the system CaO-SiO₂- $A_{12}O_3$ have long been known in the fields of cement chemistry and ceramics [23]. In addition to mullite, the calcium silicates (C₃S, C₂S, C₃S₂, CS) and calcium aluminates (C₃A, C₁₂A₇, CA, CA₂, CA₆), the system includes two ternary phases: gehlenite and akermanite.C₂S is compatible with C₃A, C₁₂A₇, CA and gehlenite, as well as with C₃S and C₃S₂. In system CaO-SiO₂-CaSO₄, CaSO₄ is incompatible at 1100 °C with C₂S, with which it reacts to form ternesite. Consequently, the equilibrium phases in the CaO-rich zone would be: i) CaO-CaSO₄-Ca₅S₂Ŝ; ii) CaO-C₂S-Ca₅S₂Ŝ; iii) C₂S- Ca₅S₂Ŝ-C₃S₂; iv) CaSO₄- Ca₅S₂Ŝ-C₃S₂ [18]. A ternary phase, $C_4A_3\hat{S}$, present in system CaO-A₁₂O₃-CaSO₄, is positioned in between the CaSO₄ and the C₃A, C₁₂A₇ and CA. The phases in the Ca-rich zone of the system that are compatible at temperatures under 1350 °C are: i) CaO-C \hat{S} -C₄A₃ \hat{S} ; ii) CaO-C₃A- C₄A₃ \hat{S} ; iii) C₃A- C₁₂A₇- C₄A₃ \hat{S} ; iv) C₁₂A₇-CA- C₄A₃ \hat{S} [24]. Studying system CaO-SiO₂-A₁₂O₃-CaSO₄ at temperatures between 950 °C and 1150 °C, Pliego-Cuervo [9] found ternesite to be incompatible with $C_{12}A_7$ and CA, and both C_2S and C_3A to be compatible with ternesite, ye'elemite or both. The compatible phases in the CaOrich zones of the system were identified as: i) i) CaO-CŜ-C₄A₃Ŝ-C₅S₂Ŝ; ii) CaO-C₃A-C₄A₃Ŝ-C₅S₂Ŝ; iii) CaO-C₂S-C₃A-C₅S₂Ŝ; iv) C_3A - C_2S - C_5S_2 Ŝ- C_4A_3 Ŝ; v) C_2S - $C_{12}A_7$ - C_3A - C_4A_3 Ŝ; vi) C_2S - $C_{12}A_7$ - C_3A - C_4A_3 Ŝ; vi) C_2S - $C_{12}A_7$ - C_3A - C_4A_3 Ŝ; vi) C_2S - $C_{12}A_7$ - C_3A - C_4A_3 Ŝ; vi) C_2S - $C_{12}A_7$ - C_3A - C_4A_3 Ŝ; vi) C_2S - $C_{12}A_7$ - C_3A - C_4A_3 Ŝ. Strigac [23] broadened the field of study, identifying two new sets of compatible phases in which ye'elemite and ternesite would co-exist: vii) $C_2S-C_3S_2-C_4A_3\hat{S}-C_5S_2\hat{S}$; viii) $C_2AS-C_3S_2-C_4A_3\hat{S}-C_5S_2\hat{S}$. Ye'elemite and ternesite can co-exist, then, not only in calcium-rich zones of the system but also in areas with less CaO and more CaSO₄ and SiO₂, although obviously at temperatures below the ternesite decomposition threshold. ## **5 Ternesite activation** Although a number of authors have concluded that ternesite is a non-hydraulic phase [14-15], as early as 1992Berteka et al. [25] synthesised clinkers consisting primarily in ye'elemite and ternesite, with anhydrite as a residual phase. Produced at 1200°C, they exhibited very high strength after hydration. Later studies [16] showed that ternesite hydration would be moderate and very slow. According to Ben Haha et al. [26], ternesite can be activated with aluminate hydroxide to yield ettringite, stratlingite and C-S-H, the proportions of which depend on the proportion among reactives and their degree of reaction. Bullerjahn et al. [27] reported that ternesite contributed more to early age cement properties than C₂S in the CSA cements they synthesised. Montes et al. [28] showed that ternesite can also be activated by other aluminates, such as C_3A , $C_{12}A_7$, CA and $C_4A_3\hat{S}$, and established the order of activating effectiveness as: $C_{12}A_7 > CA > C_3A > >> > C_4A_3\hat{S}$. The calorimetric curves for hydrated aluminate pastes contain a first dissolution peak, followed by an induction period and an intense reaction peak in pastes CA, C₁₂A₇ and C₄A₃Ŝ [29-31]. In 2:1 ternesite: aluminate blends hydrated at 25 °C for 7 d, the presence of ternesite in the pastes was reported to alter the calorimetric curves of four aluminates, shortening the induction period and bringing the reaction peak forward [28]. Figure 2.Heat flow curves for: a) $C_{12}A_7$ (black), $C_{12}A_7$ +ternesite (grey); b) CA (black), CA+ternesite (grey); c) $C_4A_3\hat{S}$ (black), $C_4A_3\hat{S}$ +ternesite (grey) The presence of ternesite alters the hydration products of the aluminates. Pastes obtained after calorimetric studies of the ternesite/aluminate blends contain $C_4A\hat{S}H_{12}$ as a hydration product. C_2ASH_8 is also found in pastes containing $C_{12}A_7$ or CA. Stratlingite forms neither in ternesite $+ C_3A$ pastes nor in the pastes with $C_4A_3\hat{S}$, in which amorphous AH_3 is present [29]. **Acknowledgements.** This paper was funded under research project BIA2016-76466-R and by the Regional Government of Madrid and the European Social Fund (Geomaterials Programme2 S2013/MIT-2914). #### References - J.S. Damtoft, J. Lukasik, D. Herfort, D. Sorrentino, E.M. Gartner, "Sustainable development and climate change initiatives", Cem. Concr. Res. 38 (2) 115–127 (2008) - E.M. Gartner," Industrially interesting approaches to "low-CO₂" cements", Cem. Concr. Res. 34, 1489– 1498, (2004). - 3. M.C.G. Juenger, F. Winnefeld, J.L. Provis, J.H. Ideker, "Advances in alternative cementitious binders", Cem. Concr. Res. 41, 1232–1243, (2011). - M. Carmen Martín-Sedeño, A.J.M. Cuberos, A. G. De la Torre, G.Álvarez-Pinazo, L. M. Ordónez; MilenGateshkic, M.A.G. Aranda. "Aluminum-rich belitesulfoaluminate cements: Clinkering and early age hydration". Cem. Concr. Res. Volume 40, (3), March 359–369, (2010). - 5. K. Morsli, A.G. de la Torre, M. Zahir, M.A.G. Aranda. "Mineralogical phase analysis of alkali and sulfate bearing belite rich laboratory clinkers". Cem. Concr. Res., 37 639–646, (2007) - N.Sundius, Peterson (1960) "Doppelvereinigung von Sulfat und SilikataussogenanntenSulfatringen in den Zementtfen in Limnham". Radex-Rundschau. 100-103 (1960). - 7. M.W. Pryce "Calcium sulphosilicate in lime-kiln wall coating". Min Mag **38**:968-971, (1972) - 8. M.Marroccoli, F.Montagnaro, M.L. Pace, A. Telesca, G.L. Valenti, "Synthesis of calcium sulfoaluminate cements from blends of coal combustion ashes with flue gas desulfurization gypsum", *PTSE*, *Ischia*, Italy, 2010. - 9. Y.B. Pliego-Cuervo, F.P. Glasser, "The role of sulphates in cement clinkering: subsolidus phase relations in the system CaO-A₁₂O₃-SiO₂-SO₃".Cem.Concr. Res., **9**, 51–56, (1979). - 10. F.Bullerjahn, D.Schmitt, &M.BenHaha, "Effect of raw mix design and of clinkering process on the formation and mineralogical composition of (ternesite) belite calcium sulphoaluminate ferrite clinker". Cem. Concr. Res., **59**, 87-95, (2014). - 11. E. Irran, E. Tillmanns, and G. Hentschel. "Ternesite, Ca₅(SiO₄)₂SO₄, a new mineral from the EttringerBellerberg/Eifel, Germany" Mineralogy and Petrology **60**:121-132, (1997). - 12. B. Dickens, WE. Brown "The crystal structure of Cas(PO₄)2SiO₄ (silico-carrlotite)". Tschermaks Min Petr Mitt 16:1-27, (1971). - 13. PD. Brotherton ,JM Epstein , MW.Pryce,AH.White "Crystal structure of 'calcium sulphosilicate', Ca₅(SiO₄)₂SO₄".Aust J Chem **27:**657-660, (1974). - N. Sherman, J. Beretka, L.Santoro and G.L. Valenti"Long-term behaviour of hydraulic binders based on calcium sulfoaluminate and calcium sulfosilicate" Cem. Concr.Res, Vol. 25. No. 1, pp. 113-126,1995 - 15. Su, Muzhen, W.Kurdowski, F. Sorrentino, Developpement in non Portland cements". *IX. ICCC*, Vol.1, p.317, New Delhi (1992). - 16. Sahu, "Developpements in Low energy cements". Ceramics-Silikáty. **38** 191-, (1994) - 17. W. Gutt, M.A. Smith, "A new calcium silicosulphate," Nature **210**, 408–409, (1966). - 18. W. Gutt, M.A. Smith, "Studies of sub-system CaO-CaO. SiO₂-CaSO₄, Trans Br."Ceram.Soc. **66** 557-567, (1967). - T. Hanein, I. Galan, F. P. Glasser, S.Skalamprinos, A. Elhoweris, M.S. Imbabi, M.N. Bannerman, "Stability of ternesite and the production at scale of ternesite-based clinkers," Cem. Concr. Res. 98, 91– 100 (2017) - 20. F. Bullerjahn, D. Schmitt, M. B. Haha, "Method for producing ternesite," *US9073785 B2* (2015). - 21. W. Dienemann, D. Schmitt, F. Bullerjahn, "Belite-calciumsulfoaluminate-ternesite (BCT)-a new low carbon clinker technology," Cem. Int. 11, 100–109, (2013). - 22. Gang-Soon Choi and F.P. Glasser"The sulphur cycle in cement kilns: vapour pressures and solid-phase stability of the sulphate phases"Cem. Concr. Res. 18, . 367-374, (1988) - 23. J. Strigac, S. Sahu, M. Lopasovska, R. Durovcikova, V. Kovar, J. Majling, Phase Compatibility in the system CaO-SiO₂-A₁₂O₃-SO₃," Ceramics **42** 90–98, (1998). - 24. I.Kaprálik , F.Hanic, "Phase changes in the system CaO-SiO₂-A₁₂O₃-Fe₂O₃ MgO-CaSO₄-K₂SO₄ in air up to 1300°C referred to sulphoaluminate cement clinker" Br.Ceram.Trans.J. **85**, 131 (1986) - J.Beretka, L.Santoro, N.Sherman, G.L.Valenti, "Synthesis and properties of low energy cements base don C₄A₃s". XI. ICCC, Vol.3, p.195, New Delhi 1992 - 26. M. B. Haha, F.Bullerjahn, MaciejZajac"On the reactivity of ternesite" 14th ICCC, Pekín 2015 - 27. Frank Bullerjahn MaciejZajac •M.B. Haha "CSA raw mix design: effect on clinker formation and reactivity" Materials and Structures 48:3895–3911, (2015) - 28. M. Montes; M.T.Blanco Varela "Can calcium aluminates activate ternesite hydration?"Cem. Concr.Res. **103**, 204-2015 (2018). - 29. B. Raab, H. Poellmann, "Heat flow calorimetry and SEM investigations to characterize the hydration at different temperatures of different 12CaO·A₁₂O₃ (C₁₂A₇) samples synthesized by solid state reaction, polymer precursor process and glycine nitrate process Thermochimica" Acta **513**, 106–111, (2011). - 30. M.J. Sánchez-Herrero, A. Fernández-Jiménez, A.Palomo, "C₄A₃Ŝ hydration in different alkaline media,"Cem.Concr.Res. **46**, 41-49, (2013). - 31. S.R. Klaus, J. Neubauer, F. Goetz-Neunhoeffer, "Hydration kinetics of CA₂ and CAInvestigations performed on a synthetic calcium aluminate cement," Cem. Concr. Res. **43** 62–69, (2013).