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Abstract. The results of a theoretical study of the effect of a bubble layer on the propagation of acoustic 
waves through a thin three-layered barrier at various angles of incidence are presented. The barrier consists 
of a layer of gel with polydisperse air bubbles bounded by layers of polycarbonate. It is shown that the 
presence of polydisperse air bubbles in the gel layer significantly changes the transmission and reflection of 
the acoustic signal when it interacts with such an obstacle for frequencies close to the resonant frequency of 
natural oscillations of the bubbles. The frequency range is identified where the angle of incidence has little 
effect on the reflection and transmission coefficients of acoustic waves. 

1 Introduction 
Gas bubbles are the most acoustically active, natural and 
widespread formations in the liquid. The presence of a 
small amount of bubbles significantly increases the 
compressibility of the medium, while the density of the 
medium remains close to the density of the liquid. In 
addition, the oscillating bubble medium has strong 
dissipative properties, the resulting dissipative losses are 
mainly associated with interfacial heat transfer. Such 
special properties of bubble liquids make it possible to 
use bubble screens as ultrathin anti-hydrolocation 
coatings [1]. At present, air bubble layers are already 
being used to shield noise from anthropogenic activities 
during underwater drilling operations, noise from 
vibrations of other technical devices, and pile driving in 
coastal zones [2]. Acoustic properties of the near-bottom 
bubble layers are actively studied, including in the case 
of an oblique incidence of an acoustic wave [3]. The 
main aspects of the mechanics and thermophysics of 
bubbles and bubble liquids are presented in [4-6]. 
Various results of theoretical and experimental studies of 
the dynamics of acoustic waves in bubble media, 
including media containing bubble layers, are presented 
in [7-18]. Experimental work [11] presents the results of 
distortion of an acoustic signal when it falls along the 
normal to a flat sample consisting of two layers of 
polycarbonate and a layer containing an industrial gel 
with polydisperse bubbles.  

In this paper we investigate the effect of a bubble 
layer on the passage of an acoustic signal through a 
three-layered barrier at various angles of incidence. 

2 Theory 
The present analysis is based on a dispersion relation 
which is well established in the case of propagation of 

pressure pulses of the small amplitude through the 
multilayer sample containing a layer of liquid with 
polydisperse gas bubbles (e.g.[9,12]) 
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in which 0l , 0lp are the density and pressure of the 
unperturbed liquid, 0g  is the bubble volume content 

( 00 1 gl  ), lC  the speed of sound in liquid, l  

the coefficient of the kinematic viscosity of liquid, 0g  

the density of the gas in bubbles, g the adiabatic index 

of the gas in bubbles, )(aN  the distribution function of 
bubbles over the radii a ( maxmin aaa  ), g  the 

coefficient of thermal diffusivity of the gas, and pc  the 
specific heat capacity of the gas in bubbles at constant 
pressure. This dependence of the wave number 

iKKK   on the frequency ω allows us to 
determine the attenuation coefficient K  and the phase 
velocity  KCp / . 
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According to [8], the size distribution function 
)(aN is determined as 
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in which 08.00 a mm, 06.0 , 50tn  are the 
distribution parameters [8]. 

The pulse perturbation of the pressure is given using 
the imaginary part of the Morlet wavelet with the spike 
frequency s  
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Parameter   determines the location, and   is the spike 
width. 

The fast Fourier transform (FFT) method is used for 
the calculation of the dynamics of small-amplitude pulse 
perturbations. In accordance with the representation of 
the Fourier analysis, the arbitrary spatial-temporal pulse 
can be written in the form of the following integral: 

                      




 dtxKiYtxy exp)(),(  (4) 

This relation determines the inverse Fourier transform of 
the spectral function )(Y . The function )(Y  is found 
from the given initial signal 
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This relation determines the direct transform, the 
function ),0( ty . 

The methods of the discrete Fourier transform are 
used for the numerical calculation of the dynamics of 
pulse pressure perturbation p . Pulse p  is presented in 
the form of the finite sun of harmonic waves 
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In accordance with (5) for the determination of 
),( txp , it is necessary to find coefficients mz  and the 

relation (6) should be fulfilled. FFT algorithms were 
used to find coefficients mz  and to determine ),( txp . 
Expanding the initial pulse into the discrete Fourier 
series and summing its harmonic components in the new 
position, it is possible to obtain the transformed pulse 
formed under the action of the dispersion and 
dissipation. 

The following calculation technique is used for the 
calculation of the interaction of the acoustic signal in 
water with the multilayer object containing a layer of the 
bubbly liquid. According to [13], the result of the 
passage of the plane monochromatic wave 

 tiKx exp~  through the multilayer object is plane 
wave  tiKxW exp~  where W is the transmission 
coefficient of the wave, which is determined in terms of 
impedances of layers iZ  and input impedances of 

boundaries of layers in
iZ . For a multilayer object 

consisting of n layers, the transmission coefficient W and 
the reflection coefficient R have the form 
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in which jd , jK  are the thickness and wave number of 

the j-th layer, j  is the angle formed by the direction of 
propagation of the wave in the layer with the normal to 
the boundaries of the layer. The wave number for a layer 
with a bubble liquid is determined using the dispersion 
relation (1). 

3 Results 
The calculations were carried out for a multilayered 
media, as shown in Fig. 1. Similarly to [8], a 
multilayered object consisting of two identical layers of 
polycarbonate of a thickness of 6.142  dd mm a layer 
between which ( 13 d mm) is filled with a gel with air 
bubbles is used. This object is placed into a water 
between a source of the acoustic signal (piezoelectric 
transducer) and a hydrophone. 
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Fig. 1. Multilayered media scheme. 
 

Using the inverse Fourier transform, the complex 
amplitudes of the harmonic components of the initial 
pressure pulse ),0( tp  are calculated, where the 
boundary between media 5 (water) and layer 4 is taken 
as the position 0x . Then, the amplitudes of the 
harmonic components of the pulse passing through the 
obstacle to the media 1 (water) are determined, i.e. in 
water ( 432 dddx  ). The change in pressure as a 
function of time in the new position is calculated using a 
direct Fourier transform. 

In Fig. 2 and Fig. 3 show the results of the 
calculation of the dependences of the reflection 
coefficient modulus and the transmission coefficient 
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modulus on the dimensionless frequency M/ ff  
(  2/f ), where Mf  is the Minnaert resonant 
frequency 
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The radius 0a  is a parameter of the distribution function 
used (2). For the given conditions, 8.40M f kHz. The 
calculations are performed both for a three-layer barrier 
containing a bubble gel layer (curves I and II) and for a 
barrier containing a bubble-free gel layer, i.e. at 0g  
(curves III and IV). Accordingly, curves I and III are 
calculated at 0 , II and IV – at 6/ . 
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Fig. 2. Dependence of the reflection coefficient modulus on the 
dimensionless frequency. 
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Fig. 3. Dependence of the transmission coefficient modulus on 
the dimensionless frequency. 

 
The dependence R on Fig. 2 is largely determined by 

the effects of interference of waves reflected on 
individual boundaries [13]. It is not difficult to calculate 
that the minima of curve III in Fig. 2 correspond to 
frequencies determined by the relations previously 
obtained in [14] 
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Here, the subscript P denotes the parameters of the 
polycarbonate layer ( 42P ddd  ), the subscript l 
denotes the parameters of the bubble-free gel. 

For curves I and II in Fig. 2 and Fig. 3, i.e. when 
there are air bubbles in the gel, a significant difference 
from curves III and IV, when there are no bubbles in the 
gel, is achieved in the frequency range 5/ M ff . This 
range includes two frequency-domain regions 
characteristic of the bubble medium-the low-frequency 
region and the band of acoustic opacity [4, 11]. In the 
low-frequency region ( Mff  ), the effect of the sound 
dispersion is determined by interphase temperature 
nonequilibrium and the value of the phase velocity is 
much smaller lC . In the band of acoustic opacity 
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values of the phase velocity and the attenuation 
coefficient assume anomalously high values. For 
frequencies 5/2 M  ff  the influence of the angle of 
incidence is weak, the character of the curves R  and 

W  varies little. For frequencies 2/ M ff  curves I and 
II practically do not differ, i.e in this frequency range the 
effect of the angle of incidence on R  and W  is not 

essential. The minimum W  and maximum R  are 
reached in the region of the resonance frequency of the 
bubbles ( 1/ M ff ), i.e. there is almost complete 
reflection ( 95.0R ). For frequencies 5/ M ff , the 
phase velocity pC  in a gel with bubbles tends to its 
asymptotic value – the frozen velocity of sound 

llf CC  /  which differs little from the speed of sound 
in a pure gel [4]. Reduced density of bubble gel 


lllggllgl  . Thus, for high 

frequencies 5/ M ff , the acoustic properties of the 
bubble gel layer and the bubble-free gel layer differ 
little. 
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Fig. 4. The angular dependence of the reflection coefficient 
modulus on the barrier at various dimensionless frequencies. 
 

In Fig. 4 and Fig. 5, the dependences of the modules 
of the coefficients of reflection and transmission of 
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acoustic waves are plotted against the angle of incidence. 
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Fig. 5. The angular dependence of the transmission coefficient 
modulus on the barrier at various dimensionless frequencies. 
 
As noted above, for frequencies 2/ M ff  the influence 
of the angle of incidence on R and W  is practically 
absent. In the frequency range 5/2 M  ff  the value 
of the angle of incidence already has some effect on 
R and W but the curves still remain monotonic. For 

frequencies 5/ M ff  where the effect of bubbles in 
the gel on the acoustic properties of the layer does not 
appear, the angular dependences R and W  become 

nonmonotonic. But such a character of the curves R and 

W  is determined only by the laws of reflection and 
transmission of waves in a multilayer media [13] and 
will differ little from the form of the curves calculated 
for the object with a layer of bubble-free gel. 
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Fig. 6. Pulsed pressure perturbation in water containing a 
multilayered object. 
 

The form of the pressure pulse after its passage 
through the three-layer object at various angles of 
incidence onto the obstacle is shown in Fig. 6, and in 
Fig. 7 shows the corresponding dimensionless amplitude 
spectrum of the Fourier transform. The number of 
harmonics of the FFT subroutine is selected from the 
motion condition of the pulse in the purified water (when 
there is no object) without distortion. Lines I – the initial 
pressure pulse (3), lines II, III and IV are calculated for 

the transmitted signal at 0 , 6/  and 4/ , 
respectively. 
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Fig. 7. Amplitude spectrum of Fourier transform. 
 

As the angle of incidence increases, the attenuation of 
the pulse passing through the object increases. The main 
carrier frequency (the spike frequency) of the considered 
pulse is sf 0.15 MHz ( 8.3/ M ffs ). If we compare 
curves II-IV in Fig. 6 and the corresponding amplitude 
spectra in Fig. 7, it is obvious that the amplitude of the 
low-frequency harmonics ( 2/ M ff ) with a change in 
the slope angle remains practically unchanged. However, 
the original signal is set in such a way that the major part 
of its harmonics is in the frequency region 

5/2 M  ff . This determined the dependence of the 
attenuation of the transmitted pressure pulse on the angle 
of incidence. Attenuation of the pressure passing through 
the object, whose amplitude spectrum will be in the 
frequency range 2/ M ff  will not depend on the angle 
of incidence. For a pressure pulse whose amplitude 
spectrum will be in the frequency range 5/ M ff  the 
effect of bubbles in the gel layer will not appear. 

4 Conclusions 
The interaction of a small-amplitude pressure pulse with 
a thin three-layer object at various angles of incidence is 
theoretically studied. It is shown that the presence of 
polydispersed air bubbles in the gel layer substantially 
changes the transmission and reflection of acoustic 
waves for frequencies less than or close to the resonance 
frequency oscillations of the bubbles with characteristic 
mean radius of the bubble size distribution function and 
for frequencies of the acoustic opacity band. A range of 
frequencies less than the doubled resonant frequency is 
revealed, where the dependence of the transmission of 
acoustic waves through an three-layer object on the 
angle of incidence is not significant. In this frequency 
range, the transmission and reflection of acoustic waves 
will be influenced by the dimensions of the bubbles, 
their volume content and their thermophysical 
properties. 
 
The study was performed by a grant from the Russian Science 
Foundation (project No. 15-11-20022). 
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