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Abstract. This paper proposes artificial intelligence method to determinate the status of 
electromechanical equipment by analysing the changes in the readings o parameters of its 
operating mode. As experimental results have revealed the dependence of wavelet transformation 
coefficients on the characteristic scales of functional and faulty motors under different loads. 
based on which a neural classification network is developed to reveal the current state of the 
electromechanical equipment. Further studies have shown that any mother wavelet function can 
be used to implement the proposed method. The researches of the state of the drive under various 
loads confirm the correctness of the theoretical calculations and the adequacy of the model. 

1 Introduction 
Long-term operation of electrical equipment can arise 
various kinds of defects as a consequence of the wear 
and tear process. Operating  the motors in poor technical 
condition of leads to financial losses related to unpre-
dictable failure of equipment and a consequent violation 
of the technological process. One of the ways to solve 
the problem of sudden equipment failures is to monitor 
and evaluate its current status, identified by means of 
diagnostic methods, allowing to classify the current 
technical condition of the motor to one of the predeter-
mined classes of diagnoses and to determine the loca-
tions of the defects that have arisen. The functional ap-
proach allows to identify the state of the drive during its 
operation. The selected diagnostic parameters should 
identify all the object faults that have occurred, should 
be simple to measure and analyse the outcomes. In con-
trast, these requirements are met by vibration, noise and 
current consumption. The traditional method of analys-
ing such parameters is the Fourier transform [1], which 
has a number of significant drawbacks [2], not allowing 
its implementation for automatic diagnostics of electric 
drives operating under dynamic loads. As for main chal-
lenge stands the large amount of non-formalized qualita-
tive information that cannot be used with conventional 
modelling methods. This issue can be addressed and 
solved using artificial intelligence methods. 

2 Materials and methods 
Long operation activity of the electrical motors at the 
large reversed loads can generate faults. One of the most 
simple and accessible methods of diagnosing the drive 

condition is the method of the spectral analysis of stator 
current signals allowing to carry out diagnostics of the 
electrical equipment and the connected mechanical de-
vices. The received data are converted into the frequency 
domain using the Fourier transformation [1]. This trans-
formation is widely used, however it has the following 
disadvantages: 

1. The Fourier transform provides the frequency in-
formation, which is contained in the signal, however it 
cannot determine the time of occurrence of this fre-
quency. 

2. Limiting descriptiveness analysis of non-stationary 
signals: there is no possibility to analyze characteristics 
of the signal because the frequency-domain signal drop 
occurs over the entire frequency range of the spectrum. 
In addition the noise generated from "parasitic" high-
frequency components render the readings very difficult 
to analyze. 

3. Harmonic basis functions decomposition is not able 
to display signals with slope type rectangular pulses. 

4. Simultaneously, producing temporal and frequency 
analysis is impossible. 

5. Frequency analysis obtained using the Fourier 
transformation is complex and requires experienced 
specialist to understand it, which entails additional ex-
penses. 

These drawbacks do not make it possible to distin-
guish the faulty state of the electric drive from the change 
in its operating mode.To solve this problem, it is possible 
to apply wavelet analysis of signals, which considers the 
analysed time functions in terms of oscillations localized 
in time and frequency, providing a two-dimensional 
sweep of one-dimensional signals. In this case, the fre-
quency and coordinate are considered as independent 
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variable, which makes it possible to analyse the signals 
in two spaces at once. The wavelet functions of the basis 
allow us to concentrate the attention on certain local 
features of the analysed processes, which cannot be 
detected using traditional Fourier and Laplace trans-
forms. 

The wavelet transformation of a signal is represented 
in the form of a generalized series or the Fourier integral 
over a system of basis functions [3-5] 
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constructed from the mother (original) wavelet ψ(t) pos-
sessing certain properties, due to the time shift opera-
tions b and the time scale change a. The factor a1   
ensures that the norm of these functions is independent 
of the scaling number a. Small values, a correspond to 
small scales  tab , or high frequencies (ω~1/a), large 
parameters a – to large scale  tab , i.e. stretching the 
parent wavelet ψ(t) и and compressing its spectrum. 
Thus, the wavelet scale, as a unit of the time-frequency 
representation of the signals, is inversely proportional to 
the frequency (Fig. 1). 

 
Fig. 1. Value for Fourier frequency with reference to the wave-
let scale 

The recalculation of the Fourier frequencies of the 
spectrum into the scale of the wavelet, according to the 
dependence in fig. 1, will allow signals analysis into 
wavelet space [6] and find new signal characteristics that 
cannot be detected using Fourier analysis. 

2.1 Experimental researches  

To analyse the state of the drive, the current signal, 
phase voltage and vibration speed of the new healthy 
motor, which is taken as the reference are required. 
Troubleshooting in the spectrum of the current signal is 
carried out at characteristic frequencies [6] by i compar-
ing the current spectrum with the reference spectrum 
using artificial intelligence described later in the paper. 
For example, for a DC motor, the characteristic of Fouri-
er transform frequencies are shown in Table 1. 
 

Table 1. Characteristic frequencies of the current signal 

DC motor faults Сurrent (voltage)  
signal frequency 

Commutation defects rfpk 2  

Rotor defects rfp2 ,    rr fpfk  2  

Voltage ripple sfk   

Stator defects rfk   

where sf  – frequency of the network supplying the 
rectifier, (Hz); rf  – motor rotor speed, (Hz); 

3,2,1k  – number of current harmonic; p  – the 
number of poles. 

The decomposition of the time current, voltage or vi-
bration signals into a Fourier series and the analysis of 
the amplitudes at these characteristic frequencies reveals 
the observed object's faults. However, the analysis pro-
cess is very laborious and will not distinguish the faulty 
state of the engine from a change in its operating mode. 
Therefore, for further analysis, it is necessary to recalcu-
late the characteristic frequencies of the Fourier analysis 
into the scale of the wavelet. Any mother function can be 
chosen considering that of for a wavelet is achieved. 
Table 2 shows the result of the conversion to the scale of 
the Morlet wavelet for brushless DC motors PITTMAN 
5413 at 3 Hz (Table 2). 

Table 2. Ratio of the characteristic frequencies of the Fourier 
transform and the scale of the wavelet 

DC motor faults Fourier spectrum 
frequencies 

Morlet wavelet 
scale 

Commutation 
defects 

24 
48 
72 

48 
24 
16 

Rotor defects 

24 
27 
30 
33 

48 
43 
39 
35 

Voltage ripple 
50 
100 
150 

23 
12 
8 

Stator defects 
3 
6 
9 

386 
193 
129 

 
A comparative analysis of the wavelet coefficient 

functions at characteristic frequencies for different 
operating modes reveals the general rule to diagnostic 
DC and AC motors using the aforementioned method 
(fig. 2). From the provided readings, it is visible that the 
wavelet coefficients of a serviceable unloaded engine 
have insignificant fluctuations at motor start-up and then 
the process is practically linearized. When a load 
appears, the oscillatory process at the start of the motor 
is clearer, but then decreases. However, it should be 
noted that the process is repeated with certain periodicity 
Although the process is stable, there is no significant 
increase in the amplitude of the oscillations with time. 
The coefficients of the wavelet transform of the faulty 



MATEC Web of Conferences 132, 04012 (2017) DOI: 10.1051/matecconf/201713204012
DTS-2017

3

 

variable, which makes it possible to analyse the signals 
in two spaces at once. The wavelet functions of the basis 
allow us to concentrate the attention on certain local 
features of the analysed processes, which cannot be 
detected using traditional Fourier and Laplace trans-
forms. 

The wavelet transformation of a signal is represented 
in the form of a generalized series or the Fourier integral 
over a system of basis functions [3-5] 

)(1)(
a
bt

a
tab


  ,   (1) 

constructed from the mother (original) wavelet ψ(t) pos-
sessing certain properties, due to the time shift opera-
tions b and the time scale change a. The factor a1   
ensures that the norm of these functions is independent 
of the scaling number a. Small values, a correspond to 
small scales  tab , or high frequencies (ω~1/a), large 
parameters a – to large scale  tab , i.e. stretching the 
parent wavelet ψ(t) и and compressing its spectrum. 
Thus, the wavelet scale, as a unit of the time-frequency 
representation of the signals, is inversely proportional to 
the frequency (Fig. 1). 

 
Fig. 1. Value for Fourier frequency with reference to the wave-
let scale 

The recalculation of the Fourier frequencies of the 
spectrum into the scale of the wavelet, according to the 
dependence in fig. 1, will allow signals analysis into 
wavelet space [6] and find new signal characteristics that 
cannot be detected using Fourier analysis. 

2.1 Experimental researches  

To analyse the state of the drive, the current signal, 
phase voltage and vibration speed of the new healthy 
motor, which is taken as the reference are required. 
Troubleshooting in the spectrum of the current signal is 
carried out at characteristic frequencies [6] by i compar-
ing the current spectrum with the reference spectrum 
using artificial intelligence described later in the paper. 
For example, for a DC motor, the characteristic of Fouri-
er transform frequencies are shown in Table 1. 
 

Table 1. Characteristic frequencies of the current signal 

DC motor faults Сurrent (voltage)  
signal frequency 

Commutation defects rfpk 2  

Rotor defects rfp2 ,    rr fpfk  2  

Voltage ripple sfk   

Stator defects rfk   

where sf  – frequency of the network supplying the 
rectifier, (Hz); rf  – motor rotor speed, (Hz); 

3,2,1k  – number of current harmonic; p  – the 
number of poles. 

The decomposition of the time current, voltage or vi-
bration signals into a Fourier series and the analysis of 
the amplitudes at these characteristic frequencies reveals 
the observed object's faults. However, the analysis pro-
cess is very laborious and will not distinguish the faulty 
state of the engine from a change in its operating mode. 
Therefore, for further analysis, it is necessary to recalcu-
late the characteristic frequencies of the Fourier analysis 
into the scale of the wavelet. Any mother function can be 
chosen considering that of for a wavelet is achieved. 
Table 2 shows the result of the conversion to the scale of 
the Morlet wavelet for brushless DC motors PITTMAN 
5413 at 3 Hz (Table 2). 

Table 2. Ratio of the characteristic frequencies of the Fourier 
transform and the scale of the wavelet 

DC motor faults Fourier spectrum 
frequencies 

Morlet wavelet 
scale 

Commutation 
defects 

24 
48 
72 

48 
24 
16 

Rotor defects 

24 
27 
30 
33 

48 
43 
39 
35 

Voltage ripple 
50 
100 
150 

23 
12 
8 

Stator defects 
3 
6 
9 

386 
193 
129 

 
A comparative analysis of the wavelet coefficient 

functions at characteristic frequencies for different 
operating modes reveals the general rule to diagnostic 
DC and AC motors using the aforementioned method 
(fig. 2). From the provided readings, it is visible that the 
wavelet coefficients of a serviceable unloaded engine 
have insignificant fluctuations at motor start-up and then 
the process is practically linearized. When a load 
appears, the oscillatory process at the start of the motor 
is clearer, but then decreases. However, it should be 
noted that the process is repeated with certain periodicity 
Although the process is stable, there is no significant 
increase in the amplitude of the oscillations with time. 
The coefficients of the wavelet transform of the faulty 

 

motor are much lower than those of the serviceable one 
and have constant oscillations increasing with the load. 

 
Fig. 2. Wavelet stator current signal: (a) healthy motor, (b) 
faulty motor  

The carried-out analysis shows which wavelet values 
coefficients of current, voltage and vibration at the scales 
corresponding to malfunction has an identical characteris-
tic appearance that can be used for electric drives mode 
operating and technical condition determination.  

Fig. 3 illustrates the non-characteristic wavelet values. 
From this diagram it is visible, the signal has high densi-
ty and small values wavelet coefficients. At the same 
time, the signal is regular and completely repeats with 
the given frequency. This type of signals is identical to 
all frequencies indicating failure in independence of 
technical condition of the motor 

 

Fig. 3. The wavelet coefficients of the feeding tension of the 
serviceable and faulty engine at an non-characteristic scale 

By analysing the results, we receive five characteristic 
signals for diagnosing. Signals of characteristic frequencies 
for the operational off-load and loaded engines (fig. 2), and 
also an unrepresentative signal (fig. 3), it is expedient to 
carry to a class "is serviceable" while faulty loaded and off-
load to a class "is faulty. This information can be used for 
simulation of a neural network to classify the technical 
condition of the engine. 

2.2 Identification of neural network for status 
classification 

For automatic detection of technical condition of the The 
purpose of the introduced neural network is to carry out 
automatic detection of technical condition of the electric 
drive without involvement of the specialist expert [7-19]. 
As basic data values, wavelet coefficients at a scale are used 
(fig. 2), characteristic of malfunction, and an uncharacteris-
tic signal (fig. 3). As an entrance is set the matrix containing 
five lines of characteristic signals. The output of network is 
the diagnosis class: "1" – an object is serviceable, "2" – an 
object is faulty. 

Fig. 4 illustrates the neural network used to classify 
the status of the drive 

 

Fig. 4. Neural network for electric drive technical condition 
classification  

The network consists of three layers: input, hidden 
and output. The hidden layer has five neurons with tan-
gential function of activation, the output – one linear 
neuron. 

For training of neural network is achieved using the 
Levenberg-Markvardt [11] algorithm intended for opti-
mization of parameters of nonlinear regression models. 
The algorithm consists in consecutive approach of the set 
initial values of parameters to a required local optimum. 

A training selection is a set of multiple couples of 
free variable of MXx (network inputs) and dependent 
variable of MYy  (a target vector). The functional 
dependence is the set representing a regression 

),( nxfy   continuously differentiable in the field of 
W×X. The parameter ω is a vector of weight factors. 

It is required to find such value of a vector ω, which 
would deliver a local minimum of function of an error. 
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Before work of an algorithm is set the initial vector 
of weight coefficients ω.  

On each step of iteration, vector    replaces 
the initial one. For an increment assessment of ∆ω is 
used the linear approach of function: 

  Jxfxf ),(),( , (3) 

where J – Jacobean of function ),( nxf   in  . The 
matrix can be presented visually in the form:  
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where  TR ....1 is the vector of parameters. 
The increment   in a point ω, the delivering mini-

mum of DE  is equal to zero. Therefore for finding of the 
subsequent value of an incrementприращения   we 
will equate to zero a vector of private derivative произ-
водных DE  on weight ω. For this purpose we will pre-
sent (2) in the form 

2)(   fyED ,  (5) 

where  TNyyy ,.....1 and  

 TNxfxff ),(),....,()( 1   .  (6) 

By transforming and differentiating equation (6): 
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we can write the following: 

0))(()( 

 


fyJJJE TTD  (8) 

Hence, to find value   it is necessary to solve sys-
tem of the linear equations  

))(()( 1  fyJJJ TT   . (9) 

As the number of conditionality of a matrix of JJ T  is 
a square of number of conditionality of a matrix of J , a 
matrix JJ T  can be degenerate.  

))(()( 1  fyJIJ TT   ,  (10) 

where I  – single matrix.  
This parameter is appointed on each iteration of an 

algorithm. If the value of an error DE  decreases quickly, 
λ reduces this algorithm to the Gauss-newton algorithm. 
The algorithm stops in case the increment ∆ω in the 
subsequent iteration is less than present value or if the 
vector of weight coefficients delivers an error DE , 
smaller the set size or if the number of cycles of training 
of neural network is exhausted.  

The value of a vector ω on the last iteration is con-
sidered required. 

The learning disabilities of the neural network are 
presented in fig. 5 

 

Fig. 5. Neural network training result for technical condition 
classification 

 
The unloaded and loaded condition analysis of the 

drive (DC motors PITTMAN 5413, rotating speed of the 
motor of resistance of 1 Hz) showed that 386, 193 and 
129 scales of wavelet expansions belong to the class "2" 
and all remaining scales to the class "1", which 
demonstrates the existence of failure of the stator. 

Similar tests were executed on the serviceable and 
faulty motor (Frequency of 0,2 Hz, 0,4 Hz, 0,6 Hz 0.8 
Hz.) A similar experiment was made for Daubechies 
wavelet of 10-th order, Haar, the Mexican hat and Gauss.  
Recalculation of frequencies of Fourier of conversion to 
scales of these wavelet is executed. Substitution wavelet 
coefficients on data of characteristic scales in the trained 
neural network allowed to identify failure of an object 
unmistakably. The results certify to correctness of 
theoretical calculations and adequacy to the developed 
neural network model of diagnosing. 

The provided neural network algorithm ensure the 
distinguishing between functional and faulty engine 
irrespective of the load.  

To determine the technical condition and operating 
mode of the motors, an advanced neural network of the 
following structure is introduced (fig. 6). 

 
Fig. 6. Neural network for electric drive technical condition and mode operation classification 

Layer Layer Layer Layer 
Input Output 

5 5 5 
5 5 

5 
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The neural network s consists of five inputs, four 
hidden layers of with five neurons in each and five out-
puts. The goal of the neural network training is to dis-
tribute the five input signals (fig. 2, 3) to four classes: 
«11» – functional unload, «12» – functional loaded, 
«21» – faulty unload, «22» – faulty loaded. For neural 
network training the Levenberg-Markvardt [201] algo-
rithm was used. The learning results of the neural net-
work are presented in table 3 and fig. 7 respectively. 

Table 3. Results of neural network for technical condition  
and operating mode classification 

Signals Network Results 
Functional unload, (fig. 2,a) 11 
Functional loaded, (fig. 2,a) 12 
Uncharacteristic signal (fig. 3) 11 
Faulty unload, (fig. 2,b) 21 
Faulty loaded, (fig. 2,b) 22 

 
Fig. 7. Neural network training result for technical condition 
and operation mode determination 

3 Conclusions 
The artificial intelligence method of diagnosing of the 
electric drive allows with a high precision to find 
malfunctions of an observed electromechanical object. 
The realization of this method is based on wavelet 
transformation and neural networks. The validity of the 
theoretical calculations and adequacy of model are 
endorsed with simulation results based on specific 
electromechanical system. 
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