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Abstract. In this paper, a time series analysis approach is adopted to monitor and predict a traffic noise 
levels dataset, measured in a site of Messina, Italy. In general, acoustical noise shows a high prediction 
complexity, since its slope is strongly related to the variability of the sources and to intrinsic randomness. In 
the analysed site the predominant source is road traffic, that has a periodic and non-stationary behaviour. 
The study of the time evolution of this hazardous agent is very useful to assess the impact to human health 
and activities. The time series models adopted in this paper are of the stochastic seasonal ARIMA class; 
these types of model are based on the strong periodicity registered in the acoustical equivalent levels. The 
observed periodicity is related to the highly variability of urban traffic in the different days of the week. 
Three different seasonal ARIMA models are proposed and calibrated on a rich dataset of 800 sound level 
measurements. The predictive capabilities of these techniques are encouraging. The implemented models 
show a good forecasting performances in terms of low residuals, i.e. difference between observed and 
estimated noise values. The residuals are analysed by means of statistical indexes, plots and tests. 

1 Introduction  
The health of the population of urban areas is often 
threatened by the action of different pollutants [1]. 
Among them, the most common and dangerous are gases 
from combustion phenomena, high intensity 
electromagnetic fields and acoustical noise produced by 
transportation infrastructures and other human activities 
[2]. It is therefore essential to constantly monitor these 
pollutants but it is generally expensive and not always 
easy to implement. In addition, mitigation actions on 
pollution sources are usually adopted only when 
malicious agents are particularly high and hence have 
already influenced the health of citizens. High and 
dangerous acoustic levels are mainly caused by 
anthropic activities, in particular vehicular traffic and 
other transportation infrastructures. Therefore, it is clear 
that it is useful to implement analytical models that can 
provide a reliable assessment of the levels of pollution 
(see for instance [3-13]). If a reliable forecast is 
available, it is possible to limit the overcoming of certain 
levels of pollution by mitigation measures, also acting on 
the sources, before physical agents can affect the 
population. The authors gave a large contribution to 
transportation noise assessment and prediction (see for 
instance [14-30]). 

Largely adopted forecasting models are often based 
on the study of correlations or causal effects that 
influence the sources of the noise pollution levels. 
However, due to the nature of the physical phenomenon, 

in the case of acoustic noise, it is very difficult to predict 
the effects in a restricted area by studying only the 
sources. Such a method can be strongly influenced either 
by the architecture of the area where the measurements 
are acquired or other environmental interferences which 
are random and variable over time. Therefore, the 
interest in predictive models that exploit the information 
contained in measurements at the receiver, is increasing: 
these techniques include analytical models of time series. 
The authors have developed and improved various 
deterministic and stochastic models useful for modelling 
and predicting univariate time series, see for example 
[31-37].  

In this paper, three different models of time series 
analysis, useful for predicting the noise level in urban 
areas, have been developed. The predictive models 
considered here are of the stochastic class: in particular 
three different types of Seasonal Auto-Regressive 
Integrated Moving Average (SARIMA) functions have 
been developed. The SARIMA can predict the evolution 
of noise levels for a given time interval in a specific area 
of interest, i.e. the area where the data used to estimate 
the parameters (calibration) of the forecasting function 
have been acquired. 

A set of noise measurements recorded during the 
daytime in the city of Messina, Italy, is used to calibrate 
the models. These data consist of daily equivalent sound 
pressure levels (LA,eq), averaged over sixteen hours (from 
6:00 a.m. to 10:00 p.m.).  
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To determine the best model to describe the analysed
time series, a complete statistical characterization of the 
800 measured data was realized. The noise level series is 
characterized by an high auto-correlation for a seven-day 
lag: this characteristic is due to the strong dependence of 
vehicular traffic from the day of the week. In fact, since 
on Saturdays and Sundays the traffic flows are lower 
than during working days, the measured acoustic levels 
were significantly influenced by this periodicity and 
during the weekend showed lower values with respect to 
other days of the week. For this periodic behaviour,
seasonal stochastic models are adopted that take into 
account the high periodicity of the series studied. Due to 
the non-stationary nature of the data, some models 
provide for the adoption of differences operators that 
make the proposed models of the "integrated" type. To 
point at the best model, a comparison between the 
measured data and the forecasted level is performed. 
Therefore, in the final part of the paper, the analysis of 
the residuals is carried out both qualitatively by graphs 
and quantitatively using different error metrics. The 
three models provide a good approximation of the 
observed series and may indeed be useful to describe and 
predict the acoustic noise in the studied site.

2 Methods
In many scientific fields, it is useful to mathematically 
describe and predict the evolution over time of a given 
variable under study. This univariate time series can be 
modelled, for instance, by a deterministic decomposition 
model, able to extend the forecast to many periods in the 
future. Such model typology has been widely adopted by 
authors for the study of acoustic noise [31-35], 
concentration of gaseous pollutants [36] and for the 
evolution of electricity consumption [37].

However, when the studied phenomenon presents 
rapid fluctuations and a short-term forecast is useful, a 
stochastic model can be more suitable. In this paper,
three different stochastic models of the auto-regressive 
moving-average type have been implemented, also using 
differentiation operators on an acoustical noise dataset.
The proposed models are of the seasonal class, so they 
use the weekly periodicity present in the analysed data. 
Therefore, the adopted models belongs to the 
multiplicative Seasonal ARIMA type, generally 
indicated by the acronym ARIMA (p, d, q)x(P, D, Q)s,
where p indicates the degree of autoregressive 
polynomial, d indicates the number of applied
differentiations, q indicates the degree of the moving 
average polynomial. The seasonality period is indicated 
by the number s, with its seasonal autoregressive (P) and 
moving average (Q) polynomials, and D seasonal 
differentiations.

In general such a model is defined as a model with 
AR characteristic polynomial �(�)�(�) and MA 
characteristic polynomial �(�)�(�), [38], where: 

� �(�) = 1 � �1� � �2�2 � 	 �  �
 �

�(�) = 1 � �1�� � �2�2� � 	 �  ����� 
 ;  (1) 

� �(�) = 1 � �1� � �2�2 � 	 �  �� ��
�(�) = 1 � �1�� � �2�2� � 	 � �� ��� 
 .  (2) 

The forecast is built using the latest available data in 
the series, so the model is able to easily track the time 
fluctuations of the studied series by adapting rapidly to 
data changes. In addition, it is necessary to estimate few 
coefficients to construct the model function, so the 
principle of parsimony is respected. In this paper, the 
method of likelihood function maximization is adopted 
to estimate model coefficients, using the 800 acoustical 
data measured in Messina in the calibration phase.

3 Models accuracy evaluation  

Model diagnostics is concerned with testing the 
goodness of fit of a proposed predictive technique. An 
effective methodology to test model performance is 
based on the residual analysis: graphs and plots, 
statistical indexes and error metrics are good strategies to 
test models adequacy. Estimated residuals (���), in the 
ideal situation, correspond to the stochastic component 
present in a time series (et) that is considered to take into 
account irregularity of the dataset and it is not 
deterministic predictable.

Estimated residuals may be computed in the 
calibration phase of the modelling process, i.e. when the 
measurements are available, as the subtraction between 
actual data and predicted values at a given period t: 

��� =  �� � ���  .    (3) 

The general assumption is that the irregular term et is 
normally distributed and, if the model is correctly 
specified and the parameter estimates are reasonably 
close to the true values, estimated residuals should 
appear distributed like white noise. They should behave 
roughly like independent, normally distributed variables,
characterized by a null mean [38].

In the next sections, a comparison between the 
residuals of the three proposed SARIMA models, 
calibrated in the same data range, will be presented. 

In order to estimate the models accuracy, the 
statistical features of the estimated residuals, will be 
studied. Descriptive plots of the computed residuals will 
be shown to perform a qualitative analysis; frequencies 
histograms will be presented together with quantile-
quantile plots and autocorrelation plots. A quantitative
analysis will be performed using residual statistics, that 
are mean, standard deviation, median, min and max 
values. In addition, skewness and kurtosis indexes will 
be calculated to evaluate the normality of the 
distributions.

To evaluate residuals distortion from the mean value 
and dispersion around mean, quantitative metrics of error 
are given by the “Mean Percentage Error” (MPE) and 
“Coefficient of Variation of the Error” (CVE), according 
to the definition reported in [32]. 

An effective measurement of forecast accuracy is 
also the “Mean Absolute Scaled Error” (MASE) [39]. 
The MASE for seasonal time series is computed 
according to the following formula:
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���� =  1
� � |�� |

1
� �� � |�� ����� |��=�+1

��=1   . (4) 

MASE is computed using as “naïve” model [40] in 
the denominator, the value measured in the series k
periods before the period t , assuming that the period t
can replicate the observed value at time t-k. 

Considering the fact that parameters of the models 
are estimated using the method of the likelihood 
maximization, also the Akaike's Information Criterion 
(AIC) is proposed to evaluate models performances. This 
criterion suggests to select the model that minimizes:

��� = �2 log(�!���"� #���#�$%%&) + 2� , (5)

where k = p + q + 1 if the model has an intercept or a 
constant terms, k = p + q otherwise. 

4 Data analysis and model specification  

An acoustical data set related to the city of Messina,
located in Sicily, in the south of Italy, has been analysed 
with the proposed forecasting models. The main sources 
of noise pollution are car traffic and typical anthropic 
activities of a medium-sized city. Indeed, the city of 
Messina has about 240000 inhabitants and, among the 
various problems of pollution distinctive of a medium 
urban agglomeration, also shows persistent acoustical 
noise caused by vehicular traffic. In different areas of the 
city the local administration has located noise 
monitoring stations, in which fixed and mobile sound 
level meters are installed. Therefore, time series of 
acoustical levels are available to study the noise 
pollution phenomenon. In this paper, the authors have 
taken into account the equivalent daily level, weighted 
with the “A” weighting curve, registered in the site of 
“Via La Farina”. 

The measurement of road traffic noise was carried 
out by the "Environmental Monitoring Service" of 
Messina. 

The noise series used for this study refers to the daily 
time period: from 6:00 am to 10:00 pm and 800 data will 
be used in the calibration phase of the models. This time 
series is composed by 628 measured data and 172 data 
imputed using the technique described in [41]. The 
observational period starts on the 22nd of April 2008 and 
finishes on the 30th of June 2010. The summary statistics 
of the data are shown in Table 1. The observed mean 
level of about 71 dBA is very high considering the urban 
residential area under study and this level, considering 
the low standard deviation and spread, is persistent 
during the observation period.

In Fig. 1, the analysed series is plotted in the time 
domain: the seasonal nature of the acoustical level is 
evident. The weekly periodicity is confirmed also by the
correlogram plot of the observed data, that shows the 
maximum autocorrelation for a lag of seven days (Fig. 
2).

To infer the structure of a stochastic process from the 
time series of that process is necessary to make some 

simplifying and reasonable assumptions; the most 
important of these is stationarity [38]. Thus, to build an 
effective seasonal ARMA model is useful that the series 
is stationary: to achieve this goal, the technique of the 
differentiation is adopted. Figure 3 shows the 
autocorrelation plots of the series after three diverse 
differentiations choices: 3(a) refers to a difference at lag 
one; 3(b) refers to a difference at lag seven (seasonal 
difference); 3(c) refers to the series after a first
difference at lag one and a second difference at lag 
seven.

Table 1. Summary statistics of the 800 observed acoustical 
levels measured during the calibration period.

Mean 

[dBA]

Std. 

Dev. 

[dBA]

Median 

[dBA]

Min

[dBA]

Max

[dBA]
Skew Kurt

70.78 1.50 71.25 66.0 74.0 -1.18 0.48

Fig. 1. Observed daily equivalent levels in the 800 calibration 
periods.

Fig. 2. Correlogram plot for the first 800 days of the series. 
The value of autocorrelation is plotted as a function of the lag. 

5 SARIMA models details
In the previous section, the time series under study has 
been described from the statistical point of view. In this 
section three different SARIMA models are designed 
and applied to mathematically reproduce the observed 
acoustical phenomenon. Two models use the 
differencing technique to obtain a stationary series. All 
the three adopted models belong to the seasonal
multiplicative class. Parameters estimation for all the 
proposed models is obtained using the maximum 
likelihood method implemented in the R software. 

�     
 

DOI: 10.1051/, 05013 (2017) 712501MATEC Web of Conferences 25 matecconf/201
CSCC 2017

5013

3



(a)

(b)

(c)

Fig. 3. Correlogram plots for the first 800 days of the series
after differencing. (a) correlogram of the series after a

difference at lag one; (b) correlogram of the series after a
difference at lag 7; (c) correlogram of the series after a first 

difference at lag one and a second difference at lag 7. 

5.1 Seasonal autoregressive moving average 
(0,1,1)x(0,1,1)7 model 

The first model adopted is a Seasonal ARIMA with 
seasonal lag equal to seven days (s = 7): according to the 
most used notation the model is a SARIMA 
(0,1,1)x(0,1,1)7 type. Recalling what presented in 
Section 2, the model can be formulated as follows:

�� =  ���1 + ���7 � ���8 + �� � ����1 � ����7 ++ �����8       (6) 
  ���+1 =  �� + ���6 � ���7 � ���� � �����6 ++ ������7      (7) 

Looking at Fig. 3(c) seems reasonable that a simple 
model is adequate, so after taking both a first difference 
at lag one and a second difference at lag seven, only a
negative autocorrelation remains, for lag 1 and 7. In 
table 2, the numerical values of the two moving average 

coefficients are reported. Those two estimated 
coefficients have a low standard error with respect to 
their absolute value, so the null value for the coefficients 
can be neglected. Figure 4 shows that this parsimonious 
model is able to correctly reproduce the general 
behaviour of the studied seasonal series. The measured 
acoustical level is tellingly lower than predicted one 
around the 550th period, but usually, in this kind of 
environmental application, a model that overestimates a
pollutant level is preferable than an underestimating one.

Fig. 4. Comparison between the observed 800 calibration data 
and the levels in the same periods predicted by the SARIMA 

(0,1,1)x(0,1,1)7 model.

5.2 Seasonal autoregressive (7,1,0)x(0,1,0)7
model

The second model adopted is again a Seasonal ARIMA 
with seasonal lag equal to seven days (s = 7); more 
precisely the model can be identified as a SARIMA 
(7,1,0)x(0,1,0)7 type. In the following formulas, '� is the 
differenced (i.e. “stationarized”) series: 

'� =  �� � ���1 � ���7 + ���8  (8) 

'*�+1 =  �1'� + �2'��1 + �3'��2 + �4'��3 ++�5'��4 + +�6'��5 + �7'��6   (9) 

This second model is based on the assumption that all 
the useful information is contained in the past seven 
periods of the series respect to the forecasted day. The 
model adopt both first and seasonal differentiation and 
only autoregressive terms. In table 3, it is possible to 
notice that the coefficients of the AR5 and AR6 terms 
are not different from zero by a statistical point of view,
thus one can conclude that noise levels measured five 
and six days before do not significantly affect the 
forecasts of acoustical levels. The good predictive 
performances of this model, in a one step ahead 
forecasting during the 800 observed days, is shown in
figure 5. 

Table 2. Estimated value of the coefficients adopted by the 
SARIMA (0,1,1)x(0,1,1)7 model. 

Coefficients Estimated Value Standard Error

MA1(�) 0.7078 0.0387
SMA1(�) 0.8966 0.0306

Log likelihood = -974.39; AIC = 1954.78
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Fig. 5. Comparison between the observed 800 calibration data 
and the levels in the same periods predicted by the SARIMA 

(7,1,0)x(0,1,0)s7 model.

5.3 Seasonal autoregressive moving average 
(0,0,1)x(1,0,0)7 model

The third model adopted is a SARIMA (0,0,1)x(1,0,0)7,
that is slightly different from the previous, since the 
intercept m is not null. The basic model and the forecast 
equation are:   

�� =  � + �(���7 � �) + �� �  ����1 (10) 

���+1 =  � + �(���6 � �) �  ����    (11) 

Fig. 6. Comparison between the observed 800 calibration data 
and the levels in the same periods predicted by the SARIMA 

(0,0,1)x(1,0,0)7 model.

This third model differs from the others because it 
does not apply the differentiation operator on the time 
series under study. In general, the differentiation has the 
aim to make the data stationary and the standard 
assumption is that stationary series have a zero mean. In 
the adopted model, a nonzero constant mean is fulfilled
introducing the intercept term m, in this case about 70.8 
dBA as shown in Table 4.  

Also the third proposed model, with the intercept 
term, shows good predictive performances: in Figure 6 
the general behaviour of the series is well reproduced.

6 Model diagnostics and residual 
analysis
In this section a statistical analysis of the forecasting 
errors, denoted in the calibration phase whit the term 
“residuals” and defined in the formula (3), is performed.
In table 5, measurements of central tendency and 
dispersion for the three models are reported, together 
with the minimum and maximum value of the residuals 
and skewness and kurtosis indexes. These results show 
that all the three models are capable of a good 
forecasting in the calibration dataset: mean and standard 
deviation are very low and the distributions of the error 
are almost symmetrical. In some specific periods, the 
three models are not able to follow drastic fluctuations of 
the acoustical noise, so the minimum and maximum 
values of the residuals exceed 5 dBA. An outlier 
detection and removal analysis could improve these 
parameters, reducing the value of minimum and 
maximum residuals. 

In table 6, values of the error metrics presented in 
section 3 are shown. No one of the three models appears
to be better than the others: MPE and CVE are always 
very low, MASE is lower than 1 for all the models and 
AIC values are similar.

Table 7 reports the values of Shapiro-Wilk [42] and 
Jarque-Bera [43] normality tests. Both the tests reject the 
null hypothesis of a normal distributed sample: rapid
fluctuations of the acoustical noise are not well described 
by the three models, so the tails of the residuals 
distribution deviate from a normal shape. 

Table 5. Summary statistics of the residuals distribution 
evaluated on the calibration dataset for the three models.

Mean 

[dBA] 

Std. 

Dev. 

[dBA]

Median 

[dBA]

Min 

[dBA]

Max 

[dBA]

Skew Kurt

Mod1 0.02 0.84 0.03 -5.46 5.00 -0.67 8.44
Mod2 0.00 0.89 0.00 -5.12 5.09 -0.22 6.90
Mod3 -0.01 0.88 0.02 -5.10 4.35 -0.41 6.40

Table 3. Estimated values of the coefficients adopted by the 
SARIMA (7,1,0)x(0,1,0)7 model. 

Coefficients Estimated Value Standard Error

AR1(�) -0.3921 0.0330
AR2(�) -0.2703 0.0359
AR3(�) -0.1987 0.0375
AR4(�) -0.1524 0.0377
AR5(�) -0.0442 0.0374
AR6(�) 0.0020 0.0362
AR7(�) -0.3763 0.0337

Log likelihood = -1052.27; AIC = 2118.54

Table 4. Estimated values of the coefficients adopted by the 
SARIMA (0,0,1)x(1,0,0)7 model. 

Coefficients Estimated Value Standard Error

Intercept 70.7876 0.1924
MA1(�) -0.3535 0.0295

SAR1(�) 0.7833 0.0218
Log likelihood = -1052.88; AIC = 2111.77

Table 6. MPE, CVE, MASE (error metrics) and AIC values 
calculated in the calibration phase, for the three different 
models. 

MPE CVE MASE AIC

Model 1 0.013 0.012 0.905 1954.78
Model 2 -0.008 0.000 0.972 2118.54
Model 3 -0.026 0.000 0.983 2111.77
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Table 7. Shapiro-Wilk and Jarque-Bera normality tests 
performed to residuals of the models applied to the 800 

calibration data. 
Shapiro-

Wilk

statistic

Shapiro-

Wilk

p-value 

Jarque-

Bera

statistic 

Jarque-

Bera

df

Jarque-

Bera

p-value

Mod1 0.8771 2.2e-16 2403.7 2 2.2e-16
Mod2 0.8968 2.2e-16 1576.5 2 2.2e-16
Mod3 0.9028 2.2e-16 1306.6 2 2.2e-16

(a)

(b)

(c)

Fig. 7. Residuals of the first model applied to the 800 
calibration data: (a) correlogram plot; (b) histogram; (c) normal 

probability plot that describes the residuals behaviour 
compared to a normal distribution.

In figures 7, 8 and 9, three plots that describe the 
features of the residual distributions are reported, 
respectively for the three models. The almost normal 
distribution of residuals for all the models is a good 
result, since it is characteristic of casual and not 
systematic forecasting errors. In figure 7a, a residual 
autocorrelation for lags of one and seven days is still 
present. The second model shows a significant negative 
autocorrelation in the residuals, only for a lag of 14 days
(see figure 8a). Finally, the third adopted model has 
autocorrelation in the residuals for lags of two and seven 
days (figure 9a).

(a)

(b)

(c)

Fig. 8. Residuals of the second model applied to the 800 
calibration data: (a) correlogram plot; (b) histogram; (c) normal 

probability plot that describes the residuals behaviour 
compared to a normal distribution.
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(a)

(b)

(c)

Fig. 9. Residuals of the third model applied to the 800 
calibration data: (a) correlogram plot; (b) histogram; (c) normal 

probability plot that describes the residuals behaviour 
compared to a normal distribution. 

7 Conclusions 
In this work a time series of urban noise levels has been 
analysed. The aim of this analysis was the design of a 
forecasting model able to monitor and predict noise 
pollution in any urban area. The studied time series was 
composed by sound level measurements registered in a
large and crowded road of the city of Messina, Italy. 

Since the analysed series showed an evident periodic 
behaviour, the three proposed models were of the 
seasonal ARIMA typology. Higher noise levels have
been measured during working days of the week, while,
on the contrary, Saturday and Sunday the reduction of 
the anthropogenic activities (and of the traffic flows) 
implicated a lower level of noise pollution. The mean 
value of the measured acoustical levels (70.78 dBA) was 
quite high considering that the studied location was near 
many residential buildings.

Two of the three proposed models used the data 
differentiation technique to achieve better stationarity of 
the time series. The 800 daily acoustical levels of the 

studied time series have been used to estimate the 
coefficients of the adopted models in the calibration 
phase of the modelling procedure.  

These calibration data have been also used for a 
quantitative comparison between the performances of the 
three models. The comparison was performed by means 
of residuals analysis. The three models showed good 
performances in terms of low standard deviation and 
close to zero mean value of the residuals distributions. 
Frequency histograms and Q-Q plots of the residuals 
showed that the residuals are quite normally distributed.
However, no one of the proposed models was able to 
follow casual and sudden fluctuations of noise level, thus
the tails of residuals distributions differed from the 
normal shape.

Finally, thanks to the MASE error metric, it has been 
observed that the three proposed models offered a
prediction that on average was better than the chosen 
naive model. As naive model, taking into account the 
strong autocorrelation of seven period, it was assumed 
that a reference forecast can be obtained by assuming 
that the period t may replicate the observed value at 
period t-7. The MASE confirmed this remark since for 
the three proposed models this error metric is less than 
one. 
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