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Abstract. Advanced instrumentation, dealing with nanoscale technology at the current edge of human 
scientific enquiry, like X-Ray CT, generates an enormous quantity of data from single experiment. The very 
best modern lossless data compression algorithms use standard approaches and are unable to match high 
end requirements for mission critical application with full information conservation (a few pixels may vary 
by com/decom processing). In previous papers published elsewhere, we have already shown that traditional 
Q Arithmetic can be regarded as a highly sophisticated open logic, powerful and flexible bidirectional 
formal language of languages, according to “Computational Information Conservation Theory” (CICT). 
This new awareness can offer competitive approach to guide more convenient algorithm development and 
application for combinatorial lossless compression. To achieve true lossless com/decom and to overcome 
traditional constraints, the universal modular arithmetic approach, based on CICT Solid Number (SN) 
concept, is presented. To check practical implementation performance and effectiveness, an example on 
computational imaging is benchmarked by key performance index and compared to standard well-known 
lossless compression techniques. Results are critically discussed. 

1 Introduction 
Advanced instrumentation, dealing with nanoscale 
technology at the current edge of human scientific 
enquiry, like X-Ray CT, generates an enormous quantity 
of data from single experiment [1]. Even in MicroCT or 
Discrete Tomography (DT) by electron microscopy, 2-D 
projection images are acquired from various angles, by 
tilting the sample, generating new challenges associated 
with the problem of formation, acquisition, compression, 
transmission, and analysis of an enormous quantity of 
data [2], [3]. During this time of exploding data growth, 
disk manufacturers have begun running into the physical 
limitations of current storage technology (e.g., disk 
platter bit density, data transfer, etc.) and to seek new 
technologies to rely on [4].  

Contemporary approaches to data compression vary 
in time delay or impact on application performance as 
well as in the amount of compression and loss of data. 
Two approaches that focus on data loss are lossless (no 
data loss) and lossy (some data loss for higher 
compression ratio). Different from natural images, 
advanced technology imaging and medical images 
generally have two special issues that should be noted in 
compression. First, they are sensitive to compression 
errors. Large distortion arising from lossy compression 
may invalidate their interpretation and diagnostic values. 
Second, especially the monochromatic images usually 
have extended dynamic range. Each pixel typically 
contains 16 or 12 bits per channel, compared to the 8-bit-
depth pixels of common natural images. Nevertheless, 
both lossless and lossy compression schemes have been 
proposed to compression image application. Lossy 

compression (irreversible, i.e. information dissipation) 
schemes can achieve much higher Compression Ratio 
(CR) than lossless ones, by allowing some distortion in 
reconstruction. However, for mission critical application, 
the lossy distortion level must have to be supervised by 
qualified experts to avoid possible legal and diagnostic 
problems, especially for medical application [5],[6]. 

Lossless compression (reversible, i.e. information 
conservation) schemes provide reconstructed images 
identical to the original ones, but suffer from relative 
lower compression ratio, typically between 2:1 and 4:1. 
Furthermore, a single compression ratio (CR) cannot 
serve as a guideline for the compression of medical 
images, as compression artifacts vary considerably with 
image content, scanning technique, and compression 
algorithm [7]. Some image compression schemes have 
been adopted by the DICOM standard [8], among which 
JPEG 2000 [9]. It is based on a reversible integer 
wavelet transform and it is considered to have the best 
performance and a few good properties. JPEG 2000 
provides both lossy and lossless compressions for 
images with bit depth no more than 16 bit per channel, 
and allows progressive transmission with SNR (Signal to 
Noise Ratio) and spatial scalability. In particular, it 
supports ROI (Region Of Interest) coding, so that image 
regions with diagnostic importance can have much 
higher quality than the other parts.  

The codestream obtained after compression of an 
image with JPEG 2000 is downscalable in nature, 
meaning that it can be decoded in a number of ways; for 
instance, by truncating the codestream at any point, one 
may obtain a representation of the image at a lower 
resolution, or signal-to-noise ratio. However, as a 
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consequence of this flexibility, JPEG 2000 requires 
encoders/decoders that are complex and computationally 
demanding. JPEG 2000 has been published as an ISO 
standard, ISO/IEC 15444. According to Wikipedia, as of 
2013, JPEG 2000 is not widely supported in web 
browsers, and hence is not generally used on the Internet
[10]. Traditional lossless compression techniques can be 
mapped to three main reference areas according to their 
compression underlining principle: a) Entropy encoding; 
b) Dictionary; c) Others. The very best modern lossless 
compressors use probabilistic models, such as prediction 
by partial matching.

2 Contemporary techniques limitations
As a matter of fact, we can say that almost all 
contemporary data compression techniques are still 
based on binary code uncertainty probabilistic
evaluation, by treating messages to be encoded as a 
sequence of independent and identically distributed 
random variables, according to the probabilistic 
approach of the father of probabilistic communication
theory [11]. Their major points of weakness for 
contemporary data compression techniques to be used 
for high demanding lossless applications are: 

1) context and data type compression effectiveness 
and efficiency strong dependence for algorithm 
optimization; 

2) centralized data size compression/decompression 
speed and space limitations; 

3) fixed bit depth for image com/decom processing 
or just downgrading. 

Third point is especially inadequate for discrete 
tomography and advanced biomedical imaging 
applications where high data reliability is required, at 
different bit depth output representation scenarios (for 
instance, a network with many different output devices 
with different output bit depth each). 

Our main interest is most focused on convenient 
zero-knowledge universal lossless comp/decomp 
algorithm for advanced applications as discrete 
tomography, computed tomography and medical images 
with true "Arbitrary Bit Depth" (ABD) resolution [5],[6]. 
No contemporary lossless comp/decomp algorithm is 
able to satisfy this kind of specification yet. Furthermore 
it would be a plus to use traditional BD (Bit Depth) 
settings of images, more efficiently, so that only a small 
part of the coded bit-stream is needed at the decoder to 
lossless regenerate and display the original image, with 
recommended BD parameters for specific need.

3 Combinatorial lossless compression 
Human biological transducers, by which we acquire 
information on the outer world interacting with it, are 
intrinsically discrete. This means that our perception of 
continuous shapes is just an illusion created by our mind.
From this ground we can infer that an illusion of 
continuity can be achieved by discrete optimized support, 

without even noticing any difference, maintaining thus a 
maximum representation coverage property. 
 In general, optimization problems can be divided into 
two large categories depending on whether the variables 
are continuous or discrete. In solving a classical linear 
optimization problem (continuous), one can exploit the 
fact that, due to the convexity of the feasible region, any 
locally optimal solution is a global optimum.  

An optimization problem with discrete variables is 
known as a combinatorial optimization problem. In a
combinatorial optimization problem, we are looking for 
an object such as an integer, permutation or graph from a 
finite (or possibly countable infinite) set [12]. In many 
such problems, exhaustive search is not feasible. It 
operates on the domain of those optimization problems, 
in which the set of feasible solutions is discrete or can be 
reduced to discrete, and in which the goal is to find the 
best solution. In finding global optima for integer 
optimization problems, one is required to prove that a 
particular solution dominates all others by arguments, 
other than the calculus-based approaches of convex
optimization.  

While in linear optimization problems, the feasible 
region is convex, the feasible regions of classical integer 
optimization problems consists of either a discrete set of 
points or, in the case of general MILP (Mixed Integer 
Optimization Problem), a set of disjoint convex 
polyhedra [13]. Some common problems involving 
combinatorial optimization are the Traveling Salesman 
Problem (TSP) and the minimum spanning tree problem. 
TSP is NP-hard problem in combinatorial optimization, 
notoriously, and P versus NP problem is a major 
unsolved problem in computer science [14]. 
Nevertheless, when a discrete optimized solution is 
obtained, the discrete approach reveals to be, in this 
sense, highly convenient because it strongly decreases the 
computational cost and the complexity of the system for 
representation modelling. According to computational 
information conservation theory (CICT) [15],[16], in
Arithmetic the structure of closure spaces (across an
Outer-Inner Universe boundary) is self-defined by 
Natural Numbers Reciprocal Space (RS) representation
[17],[18]. By this way, Natural Number can be thought as 
both structured object and symbol at the same time. 

3.1. Linear arithmetic closure

As a simple example, let us consider a generic fraction 
N/D, where N and D � Z, and D = 0.70 , L an integer 
counter, N the dividend, Q the quotients and R the 
remainders of the long hand division. In traditional
arithmetic long division algorithm (the one you learn to 
divide at elementary school), usual dominant result 
(quotient, Q) is important, and minority components 
(remainders, R) are always discarded. We can write the 
L, N, Q and R sequences as from Table 1. 

Table 1. L, N, Q, R SEQUENCES. 

L 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15…
N 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150…
Q 1 2 4 5 7 8 10 11 12 14 15 17 18 20 21…
R 3 6 2 5 1 4 0 3 6 2 5 1 4 0 3…
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for L = 1, 2, 3, …
In this specific case, we see that the remainder R

sequence repeats itself after 7 remainders with R(L)
given by:

R(1+7n) = R1 = 3, R(2+7n) = R2 = 6, R(3+7n) = R3 = 2, 
R(4+7n) = R4 = 5, R(5+7n) = R5 = 1, R(6+7n) = R6 = 4, 
R(7+7n) = R7 = 0 for n = 0,1,2,3,…

Accordingly, we can rearrange the quotients with respect 
to their cyclic remainder value respectively, obtaining 
the R1, R2, R3, R4, R5, R6, R7 sequences as from 
Table 2. 

Table 2. R1, R2, R3, R4, R5. R6, R7 SEQUENCES. 

R1 Q1, Q8, Q15, Q22, Q29, Q36, Q43, Q50,…
R2 Q2, Q9, Q16, Q23, Q30, Q37, Q44, Q51,…
R3 Q3, Q10, Q17, Q24, Q31, Q38, Q45, Q52,…
R4 Q4, Q11, Q18, Q25, Q32, Q39, Q46, Q53,…
R5 Q5, Q12, Q19, Q26, Q33, Q40, Q47, Q54,…
R6 Q6, Q13, Q20, Q27, Q34, Q41, Q48, Q55,…
R7 Q7, Q14, Q21, Q28, Q35, Q42, Q49, Q56,…

In a more compact modular format, we can write:
R(L) = 3 L mod(07) and
D Q(L) = N – R(L), where N = 10 L.
We can interpret the remainders R(L) as the linear 
(unfolded) arithmetic closure to N with respect to D 
Q(L).

3.2. Exponential rational closure

For sake of simplicity, at elementary level, let us 
consider fraction 1/D, where D in Z, or Egyptian 
fraction, with no loss of generality for common fraction 
(common fraction is given by Egyptian fraction 
multiplied by N � Z, where N is the Numerator) is 
considered a simple integer division. In traditional 
rational representation, rational proper quotient is 
represented by infinite repetition of a basic digit cycle, 
called "reptend" (the repeating decimal part) [19]. The 
first repetition of basic digit cycle corresponds to the 
first full scale interval where number information can be 
conserved; CICT calls it "Representation Fundamental 
Domain" (RFD) [20]. In general, D, the denominator of 
the considered OSR (Outer Symbolic Representation) is 
given by a finite decimal word of length WD digits. From 
IOR (Inner OpeRational Representation) X, the related 
RFDL can be obtained, by a word length of LX digits. 
Elementary number theory considerations give us the 
usual worst case word length LX for RFDL, with no loss 
of information, by:

                                   LX = D - 1                                (1)

digits, if and only if 10 is a primitive root modulo D. 
Otherwise Lx is a factor of (D-1). If the period of the 
repeating decimal of 1/D for prime D is equal (���) then 
the repeating decimal part is called "cyclic number" and 
D can be referred as "primitive number" or "solid 
number" (SN) in CICT, or "full reptend prime" 

elsewhere [21]. Thus a SN is necessarily prime. It is a 
sufficient qualification, only. Conversely a prime 
number may not be a SN. So, the usual worst case word 
length LX for X, given by eq.(1), can get RFDL with no 
loss of information, related to D, just in case D is SN. 
With no loss of generality, let us consider, the first 
Integer to show SN property manifestly, that is number 
" 0.70 ". In this case D = 7, so that worst case length 
analysis gives LX = D–1 = 6 digits.

By realizing that the remainder R1 is the fixed 
multiplicative ratio of a formal power series [06], the 
computation from generator 3n (mod7) for n = 1, 2, 3,...., 
till its exponential closure, gives the sequence the 
"Fundamental Cyclic Remainder Sequence" (FCRS):

R1 = 3, R2 = 2, R3 = 6, R4 = 4, R5 = 5, R6 = 1,   (2)

from which the "Fundamental Cyclic Quotient 
Sequence" (FCQS) can be readily regenerated by 7 * Rn
(mod10):

Q1 = 1, Q2 = 4, Q3 = 2,  Q4 = 8, Q5 = 5, Q6 = 7.     (3)

So, quotient and remainder information can always be 
regenerated anew by remainder information only, but not 
vice-versa [20]. 

Therefore, 7 is just a SN and its full information 
content is usually captured by a six-digit word length 
RFD6, for Q6 and the same for R6, and the full-
information content of long division 1/7 would be stored 
into two decimal coupled words <Q, R> having length 
MQR = (6 + 6) digits in total, for exact arbitrary precision 
computation. As a matter of fact, for all rational 
sequences, the Remainder RL, at any computation 
evolutive stage LX (accuracy), is the fixed multiplicative 
ratio of a formal power series associated to the optimized 
decimal representations of their elementary generators 
[20]. Thus 1/7 associated information content can be 
lossless compressed down to minimal MQR = (1 + 1) 
digits in total, in this specific case. As a matter of fact, 
any word couple <QL, RL> can be thought to be 
equivalent to and can represent a different real 
measurement instrument class, defined by RFD word 
length LX. It is easy to see that, in general for SN of 
order 1 (SN1 for short), the greater D, the lengthier LX,
and higher the achievable compression ratio Ew.

In this simple case Ew = (2*6)/2 = 6:1, for number 7. 
By this way, finite length coupled words can provide 
both finite arbitrary computational precision and relative 
precision exact error computability in a finite amount of 
time. By remainder knowledge, it is always possible to 
regenerate exact quotient and new remainder information 
at any arbitrary accuracy, with full information 
conservation. Thanks to the above arithmetic properties, 
the division algorithm can become free from trial and 
error like in finite segment p-adic representation system, 
but with no usually associated coding burden [21]. 
According to our humble knowledge, this is the first time 
that these arithmetic properties allow this kind of 
numeric awareness for arithmetic computational system.  
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All the other members of the 1/7 RFD "Word Family 
Group" can be derived immediately, by cyclic 
permutation only, obtaining our result of Fig. 1. So, the 
final SN1 Family Group overall information compression 
ratio is given by Ef = (2 * 6 *6)/2 = 36:1. It does not take
a large leap in imagination to suspect that the next larger 
prime number p to show SN property might be a good 
candidate for exhibiting cyclic-number property on an 
even larger scale. Unfortunately there does not seem to 
be any simple rule dictating which prime number p will 
have SN1 property and which will not, so that one just 
has to check each prime out by long division to see. It 
turns out that the next higher prime number with the 
desired SN1 property is p = D = 17 where Tp = 16 digits. 
A search for still larger prime numbers with the same 
cyclic properties reveals that they are not at all rare. In 
fact no less than seven more prime numbers smaller than 
100 generate cyclic numbers of order one or SN1. They 
are: 19, 23, 29, 47, 59, 61 and 97.  

Fig. 1. Qn and Rn values for each component of SN1 Word 
Family Group 1/7 [06].

Till now we discussed a peculiar number property 
focusing our attention, for simplicity of presentation, on 
SN1 only, but it does not imply that a number has to be a 
SN1 in order to generate intriguing cycles. For instance, 
Family Group 1/13 contains the smallest cyclic-numbers 
of order two or SN2. What about more second order 
cyclics? The basic ones are also generated by a subset of 
prime fractions 1/p. The other prime numbers smaller
than 100 which generate second order cyclics are 31, 43, 
67, 71, 83 and 89. In the same manner one can now go 
on to define, and find, cyclic numbers of order three, 
four, five, and higher and higher, according to his own 
computational needs. The smallest prime number 
producing the Family Group of third order or SN3 cyclic-
number is 103. In this case, Tp = 34 digit string (so we 
have 3* 34 = 102, instead of the unique 102 digit string a
first order cyclic would have). The seven smallest primes 
generating cycles of order four through ten are 
respectively 53, 11, 79, 211, 41, 73, and 281, but you 
must reach prime number 353 to get the first prime 
generating cycle of order 11 or SN11. All the prime 
numbers less than 100 have now been covered with the 

exception of p = 37, with Tp = 3 digits. Therefore 37 is a 
cyclic number of order 12 or SN12. Multiplication 
composition of prime numbers can generate an entire 
universe of new number-cycles. So any modular group 
can be better represented by generators and relations. 
One of the earliest presentations of a group by generators 
and relations was given by the Irish mathematician 
William Rowan Hamilton in 1856, in his Icosian 
Calculus, a presentation of the icosahedral group [22], 
[23]. The first systematic study was given by German 
mathematician Walther Franz Anton von Dyck (1856–
1934) [24], student of German mathematician Christian 
Felix Klein (1849–1925), in the early 1880s, laying the 
foundations for combinatorial group theory [25]. Every 
group has a presentation, and in fact many different 
presentations; a presentation is often the most compact 
way of describing the structure of the group. In abstract 
algebra, the "fundamental theorem of cyclic groups"
states that every subgroup of a cyclic group G is cyclic. 
Moreover, the order "k" of any subgroup of a cyclic 
group G of order n is a divisor of n, and for each positive 
divisor "k" of n, the group G has exactly one subgroup of 
order "k". This is just the first step to start an intriguing 
voyage from the concept of "presentation of a group" to 
the concept of "representation theory" for combinatorial 
modular group theory [26]. Traditional rational number 
system Q can be regarded as a highly sophisticated open 
logic, powerful and flexible formal language, with self-
defining consistent words and rules, starting from 
elementary generators and relations [20]. 

4 Application example
The rich operative scenario offered by combinatorial 
modular group theory is full of articulated solutions to 
information processing problems. 

Table 3. PICTURE BENCHMARK DATABASE LIST [27]. 

N. NAME PIXELS SIZE (MB) BPP

01 artificial 3072x2048 36.80 24

02 big_building 7216x5412 223.36 24

03 big_tree 6088x4550 158.50 24

04 cathedral 2000x3008 34.42 24

05 fireworks 3136x2352 42.21 24

06 flower_foveon 2268x1512 19.62 24

07 hdr 3072x2048 36.80 24

08 leaves_iso_1600 3008x2000 34.42 24

09 leaves_iso_200 3008x2000 34.42 24

10 nightshot_iso_100 3136x2352 42.29 24

11 nightshot_iso_1600 3136x2352 42.29 24

12 spider_web 4256x2848 69.36 24
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For instance, Word Family Group SN1, discussed in the 
previous section, shows peculiar, cyclical properties that 
can be conveniently used to get interesting image 
lossless comp/decomp algorithm. Please, note from Fig.1 
that remainder Rn = a = 1,2, …, p -1, can be thought as 
pointer to Qn+1 to get the beginning of a/D quotient 
cyclical string immediately, with no computation at all, 
but the initial one for SN1 Word Family p. Combinatorial 
optimization is achieved by finding the best SN1 = p

which allow to minimize a desired constraint within a 
specified interval for each image. Then, a/p will be best 
in that no other rational in that specified interval will 
have a smaller numerator or a smaller denominator. To 
check our idea, we used an Internet public picture
database for 24 bpp color images [27] as reported by 
Table 3 and Fig.2. Twelve original colour pictures with 
different dynamic range and different overall content 
were considered. They are lossless compressed from 24 
to 16 bpp by JPEG-LS (Lossless JPEG), JPEG 2000, HD
Photo (JPEG XR) algorithms and by ours that is called 
UC (Universal Compression). 

4.1. Lossless compression technical details

Lossless JPEG was developed as a late addition to JPEG
in 1993, using a completely different technique from the 
lossy JPEG standard developed previously. It uses a 
predictive scheme based on the three nearest (causal) 
neighbors (upper, left, and upper-left), and entropy 
coding is used on the prediction error. 

Fig. 2. Pictures in Benchmark Database as from Table 1, for 
our application example [27].

The standard Independent JPEG Group libraries cannot 
encode or decode it, but Ken Murchison of Oceana 
Matrix Ltd. wrote a patch that extends the IJG library to 
handle Lossless JPEG. It has some popularity in medical 
imaging, and is used in DNG (Adobe) and some digital 
cameras to compress raw images, but otherwise was 
never widely adopted. It might be used as an umbrella 
term to refer to all lossless compression schemes 
developed by the Joint Photographic Expert group. They 
include JPEG 2000 and JPEG-LS. 

JPEG-LS is a lossless/near-lossless compression 
standard for continuous-tone images. Its official 
designation is ISO-14495-1/ITU-T.87. It is a simple and 
efficient baseline algorithm which consists of two 
independent and distinct stages called modeling and 
encoding. It was developed with the aim of providing a 
low-complexity lossless and near-lossless image 
compression standard that could offer better compression 
efficiency than JPEG. At the time, the Huffman coding-
based JPEG lossless standard and other standards were 
limited in their compression performance. Total 
decorrelation cannot be achieved by first order entropy 
of the prediction residuals employed by these inferior 
standards. JPEG-LS, on the other hand, can obtain good 
decorrelation. Part 1 of this standard was finalized in 
1999. Part 2, released in 2003, introduced extensions 
such as arithmetic coding. The core of JPEG-LS is based 
on the LOCO-I algorithm [28] that relies on prediction, 
residual modeling and context-based coding of the 
residuals. Most of the low complexity of this technique 
comes from the assumption that prediction residuals 
follow a two-sided geometric distribution (also called a 
discrete Laplace distribution) and from the use of 
Golomb-like codes, which are known to be 
approximately optimal for geometric distributions. 
Besides lossless compression, it also provides a lossy 
mode ("near-lossless") where the maximum absolute 
error can be controlled by the encoder. Compression for 
JPEG-LS is generally faster than JPEG 2000 and much 
better than the original lossless JPEG standard. Here 
JPEG-LS is used for historical reason comparison, JPEG 
2000 provides lossless compressions for images with bit 
depth no more than 16 bit per channel, and allows 
progressive transmission with signal-to-noise ratio 
(SNR) and spatial scalability. In particular, it supports 
ROI (Region Of Interest) coding, so that image regions 
with diagnostic importance can have much higher 
quality than the other parts. The codestream obtained 
after compression of an image with JPEG 2000 is 
downscalable in nature, meaning that it can be decoded 
in a number of ways; for instance, by truncating the 
codestream at any point, one may obtain a representation 
of the image at a lower resolution, or SNR. However, as
a consequence of this flexibility, JPEG 2000 requires 
encoders/decoders that are complex and computationally 
demanding. 

HD Photo slgorithm is based on technology 
originally developed and patented by Microsoft. It 
supports deep color images with 48-bit RGB, both lossy 
and lossless compression, and is the preferred image 
format for Ecma-388 Open XML Paper Specification 
documents. HD Photo offers several major key 
improvements over JPEG, including better compression, 
lossless compression, tile structured support, more color 
accuracy, transparency map and metadata support. HD
Photo is conceptually very similar to JPEG: the source 
image is optionally converted to a luma-chroma 
colorspace, the chroma planes are optionally 
subsampled, each plane is divided into fixed-size blocks, 
the blocks are transformed into the frequency domain, 
and the frequency coefficients are quantized and entropy 
coded. In July 2007, the Joint Photographic Experts 
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Group and Microsoft announced HD Photo to be under 
consideration to become a JPEG standard known as 
JPEG XR. On 16 March 2009, JPEG XR was given final 
approval as ITU-T Recommendation T.832 and starting 
in April 2009, it became available from the ITU-T in 
"pre-published" form. On 19 June 2009, it passed an 
ISO/IEC Final Draft International Standard (FDIS) 
ballot, resulting in final approval as International 
Standard ISO/IEC 29199-2. The ITU-T updated its 
publication with a corrigendum approved in December 
2009, and ISO/IEC issued a new edition with similar 
corrections on 30 September 2010. In 2010, after 
completion of the image coding specification, the ITU-T 
and ISO/IEC also published a motion format 
specification (ITU-T T.833|ISO/IEC 29199-3), a 
conformance test set (ITU-T T.834|ISO/IEC 29199-4), 
and reference software (ITU-T T.835|ISO/IEC 29199-5) 
for JPEG XR. In 2011, they published a technical report 
describing the workflow architecture for the use of JPEG
XR images in applications (ITU-T T.Sup2|ISO/IEC TR 
29199-1). In April 2013, Microsoft released an open 
source JPEG XR library under the BSD licence. As of 
August 2014, there were still no cameras that shoot 
photos in the Jpeg XR (.JXR) format.

UC provides lossless compressions for images with 
arbitrary bit depth (ABD) per channel, and allows 
progressive transmission with SNR and spatial 
scalability, at no extra cost. Specifically, it supports ROI 
(Region Of Interest) coding, so that image regions with 
diagnostic importance can have much higher quality than 
the other parts. The codestream obtained after 
compression of an image with UC is downscalable and 
upscalable in nature, meaning that it can be decoded in a 
number of ways; for instance, by truncating the 
codestream at any point, one may obtain a representation 
of the image at a lower resolution, or signal-to-noise 
ratio. Different from all other algorithms, this time, if 
you have local computational resources, you can 
regenerate the original information arbitrarily to higher 
BD. As a consequence of this flexibility, you do have to 
pay no extra cost!  

4.2. Results and discussion 

Compression results for 24 to 16 bpp lossless 
compression of the twelve database pictures reported in 
Table 3, with different content and different extended 
dynamic each, show that, on average, UC takes about 
17% more space than JPEG 2000. Nevertheless UC
shows compression speed about 17% faster than JPEG 
2000 on average. In order to achieve an overall 
evaluation and a fair comparison between so different 
algorithms, we define the key performance index (KPI) 
given by compressed bit-per-pixel (bpp) times 
compression time (s, in second) for each picture, where:

                                KPI = bpp x s   .                            (4) 

Our first raw results, with no further algorithm 
refinement out of cyclic family computation only, as 
described in Section 3.2, show that overall UC KPI 

compare quite well to HD Photo and it is better than 
traditional JPEG 2000, with no further algorithmic 
development effort or computational load.

Fig. 3. KPI 24 to 16 bpp lossless compression result for JPEG-
LS, JPEG 2000, HD Photo and UC algorithms (from back to 
front respectively): ordinate in KPI units, abscissa number 
ordering refers to picture list as from Table 1.

The only image where UC KPI is greater than HD Photo 
KPI is picture number 12, the “spider_web” picture 
shown in Fig.4. As you can see from that picture, 
different from all other picture in our Benchmark 
Database, there are a lot of linear, finer details with 
delicate superpositions embedded in it and HD Photo
algorithm can take advantage from them quite easily.

Fig. 4. Spider_web picture as n.12 test picture in our Picture 
Benchmark Database.

UC is a zero-knowledge universal lossless compression 
algorithm that does not use linear a priori knowledge to 
achieve better result. Therefore, for general purpose 
application raw UC on average can perform better than 
HD Photo, but for pictures full of superposed linear,
finer details it cannot compete with HD Photo. 
Nevertheless, raw UC algorithm parameters have not yet 
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been quite tuned for overall optimum performance, so 
there is still room for further improvement. UC exploits 
arbitrary bit depth (ABD) per channel and full 
information conservation and regeneration by design. 
UC method differs from the existing ones in three main 
features. First, it is not a traditional extended bit depth 
encoding/decoding and does not use Gray-Golomb 
coding to support progressive transmission as in VOI 
(Value Of Interest) approaches [29].
Second, UC scheme can utilize dynamic BD settings for 
original images to support dynamic BD scalability, 
which allows pixels to be progressively reconstructed in 
the order according to their display importance. Pixel 
reconstruction can be centralized or decentralized, local 
or global. Third, we can consider end-user display 
computational resource availability, for end-point 
information regeneration and network bandwidth 
minimization. Different from all other algorithms, not 
only a downscaling, but even an upscaling is possible by 
UC information conservation and regeneration. For 
images with extended bit-depth, the pixel values can be 
displayed after BD mapping to fit the display bit depth. 
Thus only pixels with interested values can be visually 
important, under certain predefined BD parameters. 

5 Conclusion
We have presented results on an universal zero-
knowledge combinatorial lossless compression scheme 
called UC, for extended dynamic range images, with 
arbitrary bit depth, based on information conservation 
and regeneration according to CICT by design. Its raw 
overall zero-knowledge lossless compression 
performance compare quite well to standard ones, but 
offering true ABD and achieving full image information 
conservation and regeneration, at no extra cost, without 
complex and computationally demanding
encoders/decoders.
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