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Abstract. Swirling flow with particle deposition effects at the lateral 
surface is numerically investigated. The flow field calculation results have 
been obtained as the solutions of the Navier-Stokes equations. Various 
flow regimes with the formation of axial recirculation zones are presented. 
The convection-diffusion model is used for the determination of the flow 
particle concentration and the formation of typical sedimentation zones.  

1 Introduction 
Swirling flows have many applications in industrial engineering, in particular, in 

hydrotechical construction, in gas turbine combustion chambers and in vortex chambers, for 
the intensification of heat and mass transfer processes [1-5]. The stability of the swirling 
axisymmetric flows is considered in [6-7]. In this work, a vortex atomizer model which 
generates aerosol particle flows is discussed. The investigated device is modeled as a 
vertical pipe with a tangential swirler at the bottom. It is placed at some distance from the 
horizontal plane with the input powder. The airflow is moved through the tangential swirler 
into the pipe by creating a pressure gradient at the top. The powder is inducted into the pipe 
through the bottom section. After the intermixing of the two-phase blend, an aerosol flow at 
the top of the pipe is formed. 

2 Formulation of the problem and numerical procedure 
The present analysis is based upon the numerical solution of the full Navier-Stokes 

equations for laminar axisymmetric viscous flow. In the cylindrical coordinate system 
zr ,,�  the Navier-Stokes equation can be represented in terms of the stream function � , 

the vorticity �  and azimuthal velocity zV  in form 
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The system of equation (1)-(4) is written in the conservative form and contains two 
dimensionless parameters: the Reynolds number ��URRe , where ν is the kinematic 

viscosity, and the swirl ratio UWG 0� .
Let 1z  be the distance from the pipe to the plane with input powder. The flow enters the 

pipe throughout the opened lateral part, 10 zz �� , with the radial velocity 0V and the 
uniformly perforated pipe surface, 01 zzz �� , with the radial velocity 0kV  and the 
azimuthal velocity 0W . The pore coefficient k is the ratio of open to total area for the 
lateral surface 01 zzz �� . The value 0V is defined as 

� � 110
0

1
2 zkzz

RU
V

��
�                                               (5) 

where U is the given mean flow velocity at the outlet section kz . 
The flow is considered in the cylindrical domain D ,0( kzz �� )10 �� r . The 

boundary conditions involve specifying the velocity profiles at the inlet section 1�r ,
00 zz �� , no-slip conditions on the rigid surfaces, and symmetry conditions on the axis 

0�r . Soft boundary conditions are imposed in the outlet section kzz � . The set of 
boundary conditions can be written in form 

0�� , 0��V , 0�

�
z

, 10 �� r , 0�z                                (6) 

)(1 zf�� , 0��V , 0�

�
r

, 10 zz �� , 1�r                             (7) 

)(2 zf�� , 1��V , 0�

�
r

, 01 zzz �� , 1�r ,                          (8) 

const�� , 0��V , 0�

�
r

, kzzz ��0 , 1�r                          (9) 

0�� , 0��V , 0�� , kzz ��0 , 0�r                           (10) 
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To solve numerically the boundary value problem (1)-(4), (6)-(11) the finite difference 
method was used. The solution of the Poisson equation (1) was obtained using the 
incomplete reduction method, and the transport equations (2)-(3) were solved using the 
implicit block iteration method. The diffuse terms were approximated by means of central 
differences. For approximating the convective terms we used a modified Leonard scheme 
with quadratic upstream terms of third-order accuracy. Initially, for each time step equation 
(1) was solved with respect to ψ, then the values of zV  and rV  were calculated from 
formulas (4) and equation (3) was solved to determine �V . 

The pressure distribution p  was found by taking the calculated velocity flow field into 
account. The Poisson equation with respect to the pressure gradient has the form 
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The boundary conditions for equation (12) are obtained from the equations of motion 
and have the form 
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For solving the boundary-value problem (12)-(15) the implicit block iteration method 
was used. 

3 Flow field calculation results
The flow fields corresponding to the boundary-value problem (1)-(11) were calculated 

for �Re 100–2000, �G 0–8, �k 0.4–0.9, �0z 1.4–2.4, and �1z 0.4–1.4. The results 
show that when a critical value of swirl is reached, a recirculation zone is formed. 

The typical streamline patterns for the calculated flows are presented in Fig. 1. Consider 
the flow field structure for an increase of swirl ratio G  and fixed parameters �Re 100, 

�k 0.5, �0z 2, �1z 1. When the swirl ratio is small �G 1, the flow pattern is qualitatively 
similar to that produced by radial blowing in a pipe through the lateral surface. In this case 
the swirl does not significantly influence the flow and at the outlet section, )( kzz � , a 
Poiseuille profile is established. With an increase in the swirl, �G 3 (Fig. 1,a), a reverse 
flow zone is generated near the wall and the typical looping bend of the streamline is 
formed. With a further increase in the swirl to �G 6, the center of this recirculation zone is 
moved to the plane 0�z  and the length of the reverse flow is extended both in the axial 
and radial directions. The maximum value of the azimuthal velocity reaches U5.0�  and 

U8.0�  for �G 3, 6 respectively and occurs near the wall.
As the Reynolds number increases, the flow structure changes. For small swirl 

numbers )2( �G  the flow structure and recirculation zone size do not change as Re  is 
increase to 1000. However with an increase in swirl to �G 4 and �Re 500 (Fig. 1,b), the 
shape of the reverse flow region is changed: the recirculation zone is U-shaped and the 
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streamlines behind it make a bend. At higher Reynolds numbers the length of the reverse 
flow zone increases and extends to the outlet section, 

k
zz � , for �Re 750 (Fig. 1,c). 

When the pipe is moved to the plane 0�z , the flow rate entering the pipe through the 
opened lateral part without the swirl is decreased. Subsequent changes in flow field 
structure are similar to those expected for an increase in swirl ratio, G . Thus for small 
Reynolds number and swirl ( �Re 100, �G 3) with decrease �1z 0.8, 0.6 the recirculation 
zone is moved to the plane 0�z , but the flow patterns are not changed qualitatively. 

At higher Reynolds number and swirl ratio ( Re =250, �G 4) a decrease of the distance 
1z  leads to an appearance of zigzag streamlines at �1z 0.8 and then at �1z 0.6 (Fig. 1,d). 

The recirculation zone is formed near the axis. There is analogous to the vortex breakdown 
phenomenon [8-10].

Increasing the pore coefficient k  for other fixed parameters leads to an increase of the 
flow rate entering the pipe with the swirl. As in the previous case there is no significant 
change to flow field structure for k  from 0.5 to 0.9, small Reynolds number �Re 100, 
250, and medium values of �G 2 at �0z 2, �1z 1. With further increase in the swirl to 

�G 6 at �Re 250, and �k 0.6 the typical looping bend of the streamline is formed. With 
an increase in k  to 0.7 a reverse flow zone with a toroidal structure appears near the axis 
which moves upstream to �k 0.8 (Fig. 1,e). 
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Fig. 1. Streamline patterns: (a) – Re=100, G=3, k=0.5, 11 �z ; (b) – Re=500, G=4, k=0.5, 11 �z ; 

(c) – Re=750, G=4, k=0.5, 11 �z ; (d) – Re=250, G=4, k=0.5, 6.01 �z ; (e) – Re=250, G=6, 

k=0.7, 11 �z . 
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4 Convection-diffusion model
The numerical investigations of two-phase flow with rigid particles are based upon the 

diffusion model. We assume that the influence of the particle motion on the basic flow is 
negligible. The flow field is defined as a sum of the particle velocity and the liquid phase 
velocity. In this case the equation of volume global continuity transforms to the diffusion 
equation for the particle concentration 
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in which с  is the particle concentration, DSc /��  is the Schmidt number, and D  is the 
diffusion coefficient. The convection-diffusion equation (16) has been used for 
investigations of particle deposition in [11-13]. 

For the determination of 
s

V  in this case experimental results [14] have been used. It 
was found, that for the particle motion in a vortex chamber only two forces are important: 
the centrifugal force 

c
F  and the Stokes force 

st
F :

r

V

rF ppc

2
3

3
4 ����� , � �rspst VVrF ������ 6                                    (17) 

where the prime denotes dimensional velocities.  
We require that the Taylor number Ta  meet the following condition: 

10 ��
�

�
rW

Ta                                                       (18) 

Then it is permissible to assume that the azimuthal velocity of the particle is equal to 
the azimuthal velocity of the liquid phase. Hence, the deposition velocity 

s
V  can be found 

from the particle motion equation in the radial direction: 
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The velocity )(zVs  is defined from (19) as an average value with respect to r, taking 

into consideration that 1��St  and )1(2
OStG �� : 

rs VrVGStzV �� �
222)(                                       (20) 

The obtained distribution )(zV
s

 is substituted into equation (16).
Let us assume that the input powder location is the domain 10( rrP �� , )0�z .

Therefore the boundary conditions for equation (16) can be written: 
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In this case reflection effects for particle deposition at the lateral pipe surface are not 
considered. We assume that the particle flux defined as cVrcDj s��  has only a 
convection part and the influence of diffusion is negligible )0( � rc . 

For solving the boundary value problem (16), (21)-(23) we used a finite difference 
relaxation method.

5 Calculation results for flow fields concentration
Numerical solutions of the boundary value problem (16), (21)-(23) were obtained for 

101��Sc , �St
15 1010 �� � . 

First consider the particle deposition process on the lateral pipe surface. The particle 
concentration flux through the wall is given as cVQ

sw
� . Fig. 2 shows the variation 

w
Q

with z  for �Re 100, �G 4, 4.5, 5, 6 (curves 1-4). For �G 4.5 (curve 2) the distribution 
has a minimum value at 95.1�z . The more strongly expressed maximum is noted for 

�G 5, 6 (curves 3,4). At the same time with decreases in the swirl, �G 4 (curve 1), the 
deposition profile is practically uniform. Thus a zone with maximum particle deposition is 
formed. The presence of such a zone is connected with the swirl ratio. 

Fig. 2. Flux concentration wQ (1-4 : G=4, 4.5, 5, 6) and flow particle rate Q (5-8: G=3, 4, 5, 6) for 
Re=100.

Significant particle deposition on the lateral pipe surface is an undesirable effect. The 
purpose of the considered device is to form an aerosol flow at the outlet section. Excessive 
swirl can lead to undesirable effects. This fact is illustrated in Fig. 2. Here the variation of 
the flow rate )(zQ is given by 
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for �Re 100, �Sc 1, 022.0�St , �k 0.5, �1z 1, �G 3, 4, 5, 6 (curves 5-8). Fig. 2 shows 
that small swirl ( �G 3) is insufficient for effective mixing. At the same time, strong swirl 
( �G 6) leads to significant particle deposition on the wall. The optimal swirl for the given 
parameters is �G 5.

Consider the nonstationary problem for particle transport and deposition. We assume 
that initially the particles occupy the volume 10 rr �� , 10 zz �� . So we specify the 
initial particle concentration as follows: 

1111 ,,0;0,0,1 zzrrczzrrc !!������             (25) 

The set of boundary conditions can be written:  

kzzzr
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Fig. 3. Concentration fields, Re=100, G=3, (a) – (e): t=1, 2, 3, 4, 5, c" =0.05, 0.025, 0.05, 0.01, 
0.002. 
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The solution of the value boundary problem (16), (25)-(27) was carried out for the 
following parameters: �Sc 1, 022.0�St , �k 0.5, �1z 1, �0z 2, �1r 0.5. The typical 
concentration field for the different time with the steps ( с" ) is presented in Fig. 3. 

Сonсlusions
The above examples give a fairly detailed picture of the atomization of a powder to 

obtain an aerosol using an open cylindrical channel in which a swirling flow is formed. The 
mathematical model used makes it possible qualitatively to describe the basic properties of 
the flow, namely, the formation of recirculation zones, the onset of rarefaction in the 
neighborhood of the flow axis under the action of the swirl, and the entrainment of powder 
by the flow with partial deposition on the lateral surface of the dispersing apparatus.  
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