

ADAMS-MATLAB Co-Simulation of A Serial Manipulator

Tejaswin Parthasarathy, Vignesh Srinivasaragavan and Soundarapandian Santhanakrishnan

Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India

Abstract. This paper presents the dynamic modelling and simulation of a now redundant robot, Mitsubishi RM-501,
and proposes a general algorithm for experimental simulation in kinematics, dynamics and control analysis to any
such robot. Through reverse engineering, a model as accurate as the real robot was developed in SolidWorks.The
simulations of the same were performed in ADAMS (dynamicmodeling software offered by MSC Software
Corp)along with MATLAB for motion studies and control dynamics. Finally, with a user-input path the accuracy and
precision of the simulator was verified.

1 Introduction
The institute of robotics in United States of America
(USA) gives the definition for a robot as “a
reprogrammable, multifunctional manipulator design to
move material, parts, tools, or specialized devices
through various programmed motions for the
performance of variety of tasks.” Nowadays, robots in
industries have a wide spectrum of applications. The
most notable ones are the welding and painting robots in
car plants [1], electronic board assembly, repairing
nuclear installations [2] etc. Moreover, many academic
and research laboratories have been trying and
developing new methods (motion planning,
manipulationplanning, grasp planning) and algorithms
(position and force control algorithms) in order to extend
its usage to diverse applications. High amount of cost and
time is involved in testing and validation of robots pave
the way to use simulated models, as a cost–effective
approach and areextensively demanded in research labs.

Simulation and analysis of PUMA 560 [3] and Stabuli
TX-4.0 [4] have previously been performed. However,
inverse kinematics, dynamic analysis and implementation
of a control algorithm have not been done so far. Thus,
enough thrust has to be given holistically to satisfy the
present needs. This is important in an economic, research
and environmental point of view, and the present work is
aimed to achieve the said goals.

This paper presents a detailed procedure for virtual
testing offive degrees of freedom (5-DOF) type model
based on the Mitsubishi RM-501 robot through
simulations. All procedures followed are presented in this
paper in detail such a way that the reader can model any
serial robot manipulators in the given software
environments.

The main highlight of the present work is to
demonstrate easy ways of co-simulation, accurate

controlling of system design as an insight into trajectory
planning. After the construction of a three-dimensional
(3D) model of the robot manipulator in DDS SolidWorks,
the model is then exported to ADAMS dynamic modeling
software for simulating kinematics and dynamic behavior
of robotic manipulator with an acceptable error
(compared to the real models). For obtaining an exact
model, inertial and geometric parameters are accurately
measured and recorded in the software database, for
simulating control algorithms, simulation between
ADAMS and MATLAB is performed.

2 Modelling
The robot itself is made up of 5 links namely: base, body,
shoulder, elbow and wrist. Each of this entity was
designed in SolidWorks. The sketches and dimensions
were made using the data extracted from [5] and the
model was made accordingly. Then these parts were
assembled in the ‘Assembly’ environment, using
appropriate constraints as deemed fit. The process of
defining all the constraints was started with fixing the
base of the manipulator (to which the universal frame
was attached). Then the ‘Coincidence’ and ‘Concentric’
commands were used to couple the other parts as deemed
fit. The revolute joints were used to couple the links in
RM-501, thus simplifying the construction of the model
and its assembly.

Once the assembly is done, the “Motion Study”
module in SolidWorks was usedto verify the robots
predetermined DOF. The “Motion Study” also provides
an option to export the geometric model to the ADAMS
environment for further processing.

2.1 Importing into ADAMS

DOI: 10.1051/, 08002 (2017) 795095MATEC Web of Conferences matecconf/201
CMME 2016I

8002

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution
 License 4.0 (http://creativecommons.org/licenses/by/4.0/).

ADAMS software was used for the dynamic analysis of
the robot model. The basic pre-requisites includes
geometric correctness and the validity of constraints were
done in SolidWorks. The material of the robot parts (as
this determines the mass and other basic dynamic
parameters) is equally significant as observed during
reverse engineering (RE). Once this is done in
SolidWorks the “Motion Study” itself is capable of
exporting these details along with the geometric model to
ADAMS. Verification of the coherence in inertial
parameters can be confirmed in both ADAMS and
SolidWorks platforms (Table 1).

Table 1. Inertial parameters of RM-501

Link m (kg) Ixx x 10
-3

(kg.m2)

Iyy x 10-3
(kg.m2)

z x 10
-3

(kg.m2)

Base NA NA NA NA

Body 2.627 22.218 69.890 61.674

Shoulder 4.875 551.141 123.225 73.646

Elbow 1.839 7.152 7.152 5.399

Wrist 1.202 0.834 0.887 0.952
End

Effector 0.185 0.078 0.078 0.033

*m is the mass of each link
**I is the Moment of Inertia about the parts Centre of Mass (CoM)

*** x,y,zare defined according to the local (not fixed) coordinate
system attached to each and every part

The motion in ADAMS can be given in two different
ways. The first one involves providing the direct motion
of the joint (in terms of angular
displacement/velocity/acceleration) in SolidWorks
Motion Manager and importing it to ADAMS. This
ensures that the same motion is replicated in ADAMS
and later it can be changed according to the needs. The
other way is fundamentally cumbersome but more
practical, which involves the user giving the necessary
joint torques so that the end effector follows the desired
path. This involves using the V_TORQUE option in
ADAMS in each and every joint, which essentially
creates a 3D torque vector. Non-zero values were then
filled in for the Z-direction component in each
V_TORQUE, while the other two components were made
zero as practical actuation was done by using individual
servo motors for a joint. The servo motors can provide
torque only in one direction. It was noted that chain
drives and gear systems should also be incorporated into
the model. It was done manually, while defining the
parameters of the individual motors. This paper illustrates
the second approach, which involves computing the
torque (and hence power) required.

3 Kinematic Analysis
Kinematic analysis in a broad sense involves both
forward and inverse kinematics. Emphasis should be
given equally for both as they directly determines the
joint torques and other related parameters in order to
make the end effector of the robot to precisely follow a
pre-defined path. The coordinate’s representation [6] and

the modified Denavit-Hartenberg parameters are shown
in Figure 1 and Table 2, respectively.

Figure 1. The assembled model of the Mitsubishi RM 501, with
the attached frames and coordinate systems

Care must be taken while importing the CAD model

of the robot into ADAMS. The position of joints must
eithercorrespond with the default ‘Home’ position
(Figure 2) or a state where all the initial joint parameters,
namely the five joint angles are known. Throughout this
paper the positive direction of rotation is compatible with
the right handed direction of Z axis.

 Quintessential to any kinematic calculations are
transformation matrices and there are six of them (one for
each degree of freedom and one for the end-effector
orientation).In this context, one each from the previous
coordinate system to the next. Transformation matrices
provide complete information about the frames. The
information includes the orientation and position of

Table 2. Denavit-hartenberg parameters of RM-501

Link

(i)
α i-1 a i-1 d i-1 θ i+1

Base 0 0 0 θ 1

Body 90 0 0 θ 2

Shoulder 0 220 0 θ 3

Elbow 0 160 0 90+ θ 4

Wrist 90 0 0 θ 5

End
Effector 0 0 137 0

Figure 2. State of the home position of the robotic arm in the
ADAMS environment

DOI: 10.1051/, 08002 (2017) 795095MATEC Web of Conferences matecconf/201
CMME 2016I

8002

2

frames, along with information on any vector of a
particular frame, if that vector is viewed from some other
frame. Transformation matrices for RM 501 are
elaborated in next section.

3.1 Forward kinematics

Given the set of joint angles (��) at any instance, the
forward kinematics is simple, as the basic equations of
forward kinematics easily determines the end-effector
position and orientation. The modified Denavit -
Hartenberg (DH) convention and methodology was used
to derive the kinematics.

The following convention was followed: (x0, y0, z0) to
(x4, y4, z4) represent the local coordinate frames at the five
joints respectively, (x5, y5, z5) represented the local
coordinate frame at the end-effector, α, γ and θ are the
rotation angles about x, y, and z axis respectively. The
base local coordinate frame (x0, y0, z0) overlapped with
the global coordinate system (X, Y, Z) as it was attached
to the base frame.

Based on the DH convention, the transformation

matrix from joint n to joint n + 1 is given by:

, where θ and α are DH parameters and cθi, sθi represent
cos (θi) and sin (θi), respectively.

Another mathematical entity which is frequently used
for describing the frame motion is a 3×3 rotation
matrix(�����) that is essentially the first 3 rows and 3
columns of the transformation matrix (�����). The
transformation matrices for all the frames are listed here.
Hence, the position and orientation of the end-effector
can be calculated if all the joint angles are given. Once
the joint angles are found, other kinematic variables can
be calculated through forward kinematics using the
following equations. ��	��	� = � �����	� + �̇�	� ���	��	� (2)

�̇�	��	� = � �̇����	� + � �����	� × �̇�	� ����	��	� + �̈�	� ���	��	� (3)

�̇�	��	� = �� �̇�� × � +�	�� ��� × � ��� × ��	�� � + �̇�� ���	� (4)

�̇��	��	� = �̇�	��	� × �� + ��	��	� × � ��	��	� × ���	�� ��	��+ �̇�	��	�
(5)

Here, ‘i’ varies from 0 to 5. Furthermore � is the
angular velocity of a link, �̇ is the angular acceleration of
a link, �̇ is the angular velocity of a joint motor, �̈ is the
angular acceleration of a joint motor, � is the velocity of
a link, �̇ is the acceleration of a link and �is the distance
from the joint. A subscript c indicates the reference to the
center of mass of a link. ���	��	� is the unit vector along Z-
axis of the frame i+1 . All the above mentioned quantities

are 3×1 column vectors (for x, y and z axis).

3.2 Inverse kinematics

Inverse kinematics, as the name suggests compliments
the forward kinematics. It deals with identifying the joint
angles when the position and orientation of end effector
is given. This is very much useful if the robot is to follow
a predetermined path.

The non-linearity involved in forward
kinematicsmakes the solution to the inverse kinematics
not only difficult but also non-unique. A single strategy
to tackle the challenging of inverse problem is by using
translation Jacobian matrices. This approach isused in
this work. The results obtained using Jacobian matrices
are in close agreement with the actual angles, provided
that the motion imparted to the robot is small between
two successive measuring positions.

Let X represent a 6×1 column vector containing the
end positions and orientation of the end effector tip.Then
the Jacobian (�) for the base-tool transformation matrix
0T6 is defined as:

� = � �����
�����

�����
�����

������ (6)

where �� represents the corresponding D-H parameter.
The forward kinematic equation is: �� = �(��, ��, ��, ��, ��)�� (7)

where � represents 5×1 the column vector containing the
relevant D-H parameters. As both sides are deterministic,
it is possible to invert the Jacobian using erstwhile �� and
obtain the value of �Ɵ and subsequently the next set of ��,
according to the equation, �Ɵ = ���(��, ��, ��, ��, ��)�� (8) Ɵ��! = Ɵ + �Ɵ (9)

It is clearly seen that the Jacobian is a matrix of
partial derivate of the position and orientation with
respect to the five joint angles. Inverse solutions for the
velocity and acceleration of each link with respect to its
frame i.e. �̇ and �̈ can be obtained by directly
differentiating the obtained values of �. If the simulation
is done in discrete steps, it suffices to differentiate using a
first order scheme to obtain the required derivatives.

3.3 Trajectory planning

Our simulation requires, the path (trajectory) as closely
spaced discrete points in ADAMS environment 3D space
and whose coordinates are stored in a database (Microsoft
Excel Spreadsheet), using a specially-constructed macro
routine. These points are taken as guides in planning the
path to be taken by the robot using the command of
inbuilt database read. The interpolation between any pair
of these consecutive points is given as a cubic polynomial: �(") = #� + $�" + %�"� + &�"� (10)

Here i is the storing indexed positions (points) in the

����� = ' *�� −-��-��*.��� *��*.��� 0 /���−-.��� −-.����� -�� *��-.���0 0 *.��� *.�����0 1 2 (1)

DOI: 10.1051/, 08002 (2017) 795095MATEC Web of Conferences matecconf/201
CMME 2016I

8002

3

database. The curve is constructed with two basic
constraints. Firstly, the velocity at the starting point and
the ending point are zero. Secondly, the velocity at the
intermediate points are unique. The coefficients of the
polynomials is solved using a Tri-Diagonal Matrix
Algorithm (TDMA).

The only disadvantage of a cubic interpolation is the
jerks in �("). As we can clearly see the second derivative
of �(") yields a linear function which will change
between a pair of consecutive input points. Though this
could have been avoided by a quadratic polynomial, it
would render the equation solution-less due to the
constraints involved.

4 Dynamic analysis
Dynamic analysis is the study of motion with regard to
the causal entities (forces and torques). Dynamic
modeling is vital for simulation and implementation of
control algorithm. The Newton-Euler methodology used
here is based on Newton’s second law,in order to
determine inverse dynamics that is used in this paper [6].
This equation can describe the behavior of a robot
manipulator link-by-link and joint-by-joint from base to
end-effector, called forward recursion and also transfer
the essential information from end-effector to base frame,
called backward recursion.

The forward recursion dynamic equations for the
force and net moment acting on a joint are: 3�	��	� = 4�	� �̇�	��	� � (11)

5�	��	� = 6�	�789: �̇�	��	� + ��	��	� × 6 � �	��	��	�789: (12)

where 3 is the force acting on a link, 5 is the moment
acting on a link, 4 is the mass of a link, �is the angular
velocity of a link, �̇ is the angular acceleration of a link, � ̇ is the acceleration of a link and 6�� is the moment of
inertia of a link ‘i’ about its center of mass. 6�� is a 3×3
matrix and function of mass of the body and geometry.
The rest of the quantities are 3×1 column vectors (for x, y

and z axis).
The inverse recursion dynamic equations for

calculating the joint forces and joint torques are: ;�� = � ;�	��	��	�� + 3�� (13) <�� = 5�� + � <�	��	��	�� + ���� × 3�� + ��	�� ×� ;�	��	��	�� (14) >� = <�� ? ���� (15)

where; is the force acting on a joint, < is the moment
acting on a joint and > is the component of < along the
local rotational axis. These quantities are 3×1 column
vectors (for x, y and z axis). A subscript c indicates the
reference to the center of mass of a link.

Based on the same, required forces and joint torques
can be calculated easily. It is noted that a pseudo-force is
applied on each and every link that simulates gravity in
real life situations by explicitly defining the acceleration
of the base to be equal to @ in the upward direction. Also

the maximum force and torque that the end effector
experiences are clearly specified for any simulation.

5 Control systems
Robotic control is considered to be the spine of robotics.
It involves making a robot manipulator to perform
operations automatically and precisely with the help of
controllers. Hence it is a vital part in all modern robots.
Typically, the controllers take the form of an equation or
an algorithm which is realized via specialized computer
programs.

Present industrial systems use a combination of
proportional, integral and derivative (PID) control. This
particular method has a wide range of applicability, ease
of implementation and is very robust, while sacrificing
some accuracy in comparison to non-linear control
methods.The values of AB, AC and A� in the PID control
loop can be fixed based on the response pattern. With any
control system, the key parameters are rise time,
overshoot, settling time, and the steady state error for a
step input. Each of the three parameters (AB, AC, A�) have
distinct effects on the four output parameters above, and
fine tuning is necessary to obtain the best possible
response. MATLAB also offers a PID tuning algorithm
that can help in deciding the values of AB, AC and A� after
an iterative process. In the given example, the value of AB, AC and A� are approximately 10 each. The values are
obtained with the help of MATLAB toolbox mentioned
above. In this simulation a simple PID control system
was implemented for each individual angle outputs.

6 Simulation and results
Co-simulation between ADAMS and MATLAB is of
paramount importance due to their efficient simulation
platform. An acceptable format for the inputs and outputs
of each program is required to execute the co-simulation.
The objective of co-simulation is to establish a
connection so that any change in one of the programs is
reflected and further affects the other one, thus utilizing
the benefits of both the program modules [7]. To provide
a simulation that enables ADAMS to recognize the
exported output from MATLAB, there is a need for
activating the ‘Control’ plug-in in the ‘Plug-in Manager’
of ADAMS and defining the robot as a plant. After
activation, a new window appears for the determination
of plant and its inputs and outputs.

To call the generated plant in MATLAB, the plant
name should be entered in the ‘MATLAB command
window’ such that the computer recognizes and displays
the input and output information. By executing the
‘Adams_sys’ command, the block containing the
information about the dynamic model is created and
loaded in the SIMULINK environment. The ‘Adams-sub’
block created in the SIMULINK should be configured as
shown in Figure3. This is a vital component, as this block
is included in the master simulation and control model,
which is again defined in SIMULINK as a separate entity.

DOI: 10.1051/, 08002 (2017) 795095MATEC Web of Conferences matecconf/201
CMME 2016I

8002

4

The master model, referred to as Master here onwards

contains all the modules of the previous sections, which
again uses all the concepts (transformation matrices,
inverse kinematics) mentioned earlier. The Master
contains the trajectory planning module, inverse
dynamics module, mainframe model of the robot and its
associated control systems. The modules are made of
snippets of MATLAB codes hence the blocks are also

user-defined and embedded MATLAB functions. Outputs
of the dynamics block represent the plant inputs of the
robot in ADAMS, namely the joint torques. By starting
the simulation in SIMULINK, the signals denoting the
joint torques enter the plant and hence runs ADAMS
simultaneously which continues to reach the definite final
state. The system is also capable of adjusting the size of
the discrete steps for each calculation. The generated
trajectory functions for each motor yields the end effector
to track the desired position and orientation. The flow
diagram indicating path generation and inverse dynamics
are shown in Figure 4.

By the end of the simulation, the end effector position
in the work space is depicted in a scope of MATLAB-
SIMULINK. During the simulation, real-time interactive
process was shown on the ADAMS interface [8]. By
comparing the results with the forward kinematics
solution, it can easily be inferred that the simulation runs
with the desired accuracy and precision.The graphs were
generated in MATLAB-SIMULINK using the ‘Scope’
module. From simulation results (Figure 5), it can be seen
that the links can track the given trajectory curve well
with smallerror.

7 Conclusions
In this paper, the virtual development of a 5-DOF robot
has been done using SolidWorks and the simulation,
testing and validation were carried out using ADAMS
and MATLAB-SIMULINK. The validity of the control
loop was put to test by imparting a sinusoidal disturbance
to the joint torques.Please do note that this observed error
was because of the purposeful sinusoidal disturbance.
Furthermore, loading the .res file into ADAMS post-
processor, it was possible to cross-check all the inertia
forces, gravity, centrifugal forces, Coriolis forces and
instantaneous power of the driver motorwith the results
that were obtained from calculation in MATLAB.

References

1. K.T. Park, Y.J. Shin, C.H. Park, Y.S. Mo, and D.C.
Jeong,ICCAS, "Robot application for assembly

process of engine part,"(2008)
2. D. D. Ray and M. Singh, CARPI,"Development of a

force reflecting Tele-robot for remote handling in

nuclear installations," (2010)
3. B. Armstrong, O. Khatib, and J. Burdick, ICRA,

"The explicit dynamic model and inertial parameters

of the PUMA 560 arm," (1986).
4. F. Cheraghpour, M. Vaezi, H. E. ShooriJazeh, and S.

A. A. Moosavian, IEEE-ICM “Dynamic modeling

and kinematic simulation of Stäubli© TX40 robot

using MATLAB/ADAMS co-simulation,” (2011).
5. Mitsubishi Electric Corporation Tokyo,"Movemaster

II RM-501 model instruction manual", (1984).
6. J. J. Craig, Introduction to Robotics: Mechanics and

Control, 3rd ed. United Kingdom: Prentice Hall,

(2003).

Figure 3. Configured Adams-sub block

Figure 4. Algorithm for MATLAB/SIMULINK –
ADAMS co-simulation

Figure 5. 2nd – Degree Norm Position* of End-Effector
(with and without control systems)

*2nd Degree Norm Position is DE� + F� + G�

DOI: 10.1051/, 08002 (2017) 795095MATEC Web of Conferences matecconf/201
CMME 2016I

8002

5

7. Z. Yi, X. Min-min, Q. Jin-yi, and Z. Hu,
ICCASM,"Research on co-simulation using ADAMS

and MATLAB for automobile active suspension

system," (2010)

8. R. M. Inigo and J. S. Morton, IEEE Trans. Educ.,
"Simulation of the dynamics of an industrial

robot,"vol. 34, no. 1, pp. 89–99, (1991)

DOI: 10.1051/, 08002 (2017) 795095MATEC Web of Conferences matecconf/201
CMME 2016I

8002

6

