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Abstract. This paper presents the dynamic modelling and simulation of a now redundant robot, Mitsubishi RM-501, 
and proposes a general algorithm for experimental simulation in kinematics, dynamics and control analysis to any 
such robot. Through reverse engineering, a model as accurate as the real robot was developed in SolidWorks.The 
simulations of the same were performed in ADAMS (dynamicmodeling software offered by MSC Software 
Corp)along with MATLAB for motion studies and control dynamics. Finally, with a user-input path the accuracy and 
precision of the simulator was verified. 

1 Introduction 
The institute of robotics in United States of America 
(USA) gives the definition for a robot as “a 
reprogrammable, multifunctional manipulator design to 
move material, parts, tools, or specialized devices 
through various programmed motions for the 
performance of variety of tasks.” Nowadays, robots in 
industries have a wide spectrum of applications. The 
most notable ones are the welding and painting robots in 
car plants [1], electronic board assembly, repairing 
nuclear installations [2] etc. Moreover, many academic 
and research laboratories have been trying and 
developing new methods (motion planning, 
manipulationplanning, grasp planning) and algorithms 
(position and force control algorithms) in order to extend 
its usage to diverse applications. High amount of cost and 
time is involved in testing and validation of robots pave 
the way to use simulated models, as a cost–effective 
approach and areextensively demanded in research labs.  

Simulation and analysis of PUMA 560 [3] and Stabuli 
TX-4.0 [4] have previously been performed. However, 
inverse kinematics, dynamic analysis and implementation 
of a control algorithm have not been done so far. Thus, 
enough thrust has to be given holistically to satisfy the 
present needs. This is important in an economic, research 
and environmental point of view, and the present work is 
aimed to achieve the said goals. 

This paper presents a detailed procedure for virtual 
testing offive degrees of freedom (5-DOF) type model 
based on the Mitsubishi RM-501 robot through 
simulations. All procedures followed are presented in this 
paper in detail such a way that the reader can model any 
serial robot manipulators in the given software 
environments.  

The main highlight of the present work is to 
demonstrate easy ways of co-simulation, accurate 

controlling of system design as an insight into trajectory 
planning. After the construction of a three-dimensional 
(3D) model of the robot manipulator in DDS SolidWorks, 
the model is then exported to ADAMS dynamic modeling 
software for simulating kinematics and dynamic behavior 
of robotic manipulator with an acceptable error 
(compared to the real models). For obtaining an exact 
model, inertial and geometric parameters are accurately 
measured and recorded in the software database, for 
simulating control algorithms, simulation between 
ADAMS and MATLAB is performed. 

2 Modelling 
The robot itself is made up of 5 links namely: base, body, 
shoulder, elbow and wrist. Each of this entity was 
designed in SolidWorks. The sketches and dimensions 
were made using the data extracted from [5] and the 
model was made accordingly. Then these parts were 
assembled in the ‘Assembly’ environment, using 
appropriate constraints as deemed fit. The process of 
defining all the constraints was started with fixing the 
base of the manipulator (to which the universal frame 
was attached). Then the ‘Coincidence’ and ‘Concentric’ 
commands were used to couple the other parts as deemed 
fit. The revolute joints were used to couple the links in 
RM-501, thus simplifying the construction of the model 
and its assembly. 

Once the assembly is done, the “Motion Study” 
module in SolidWorks was usedto verify the robots 
predetermined DOF. The “Motion Study” also provides 
an option to export the geometric model to the ADAMS 
environment for further processing.  

2.1 Importing into ADAMS 
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ADAMS software was used for the dynamic analysis of 
the robot model. The basic pre-requisites includes 
geometric correctness and the validity of constraints were 
done in SolidWorks. The material of the robot parts (as 
this determines the mass and other basic dynamic 
parameters) is equally significant as observed during 
reverse engineering (RE). Once this is done in 
SolidWorks the “Motion Study” itself is capable of 
exporting these details along with the geometric model to 
ADAMS. Verification of the coherence in inertial 
parameters can be confirmed in both ADAMS and 
SolidWorks platforms (Table 1). 

Table 1. Inertial parameters of RM-501 

Link m (kg) Ixx x 10
-3  

(kg.m2)

Iyy x 10-3 
(kg.m2)

z x 10
-3  

(kg.m2)

Base NA NA NA NA

Body 2.627 22.218 69.890 61.674 

Shoulder 4.875 551.141 123.225 73.646 

Elbow 1.839 7.152 7.152 5.399 

Wrist 1.202 0.834 0.887 0.952 
End

Effector 0.185 0.078 0.078 0.033 

*m is the mass of each link 
**I is the Moment of Inertia about the parts Centre of Mass (CoM) 

*** x,y,zare defined according to the local (not fixed) coordinate 
system attached to each and every part

The motion in ADAMS can be given in two different 
ways. The first one involves providing the direct motion 
of the joint (in terms of angular 
displacement/velocity/acceleration) in SolidWorks 
Motion Manager and importing it to ADAMS. This 
ensures that the same motion is replicated in ADAMS 
and later it can be changed according to the needs. The 
other way is fundamentally cumbersome but more 
practical, which involves the user giving the necessary 
joint torques so that the end effector follows the desired 
path. This involves using the V_TORQUE option in 
ADAMS in each and every joint, which essentially 
creates a 3D torque vector. Non-zero values were then 
filled in for the Z-direction component in each 
V_TORQUE, while the other two components were made 
zero as practical actuation was done by using individual 
servo motors for a joint. The servo motors can provide 
torque only in one direction. It was noted that chain 
drives and gear systems should also be incorporated into 
the model. It was done manually, while defining the 
parameters of the individual motors. This paper illustrates 
the second approach, which involves computing the 
torque (and hence power) required. 

3 Kinematic Analysis
Kinematic analysis in a broad sense involves both 
forward and inverse kinematics. Emphasis should be 
given equally for both as they directly determines the 
joint torques and other related parameters in order to 
make the end effector of the robot to precisely follow a 
pre-defined path. The coordinate’s representation [6] and 

the modified Denavit-Hartenberg parameters are shown 
in Figure 1 and Table 2, respectively. 

Figure 1. The assembled model of the Mitsubishi RM 501, with 
the attached frames and coordinate systems 

 
Care must be taken while importing the CAD model 

of the robot into ADAMS. The position of joints must 
eithercorrespond with the default ‘Home’ position 
(Figure 2) or a state where all the initial joint parameters, 
namely the five joint angles are known. Throughout this 
paper the positive direction of rotation is compatible with 
the right handed direction of Z axis.  

 Quintessential to any kinematic calculations are 
transformation matrices and there are six of them (one for 
each degree of freedom and one for the end-effector 
orientation).In this context, one each from the previous 
coordinate system to the next. Transformation matrices 
provide complete information about the frames. The 
information includes the orientation and position of 

Table 2. Denavit-hartenberg parameters of RM-501 

Link 

(i)
α i-1 a i-1 d i-1 θ i+1

Base 0 0 0 θ 1

Body 90 0 0 θ 2

Shoulder 0 220 0 θ 3

Elbow 0 160 0      90+ θ 4

Wrist 90 0 0 θ 5

End 
Effector 0 0 137 0

 

Figure 2. State of the home position of the robotic arm in the 
ADAMS environment

    
  

DOI: 10.1051/, 08002  (2017) 795095MATEC Web of Conferences matecconf/201
CMME 2016I

8002

2



frames, along with information on any vector of a 
particular frame, if that vector is viewed from some other 
frame. Transformation matrices for RM 501 are 
elaborated in next section. 

3.1 Forward kinematics 

Given the set of joint angles (�� ) at any instance, the 
forward kinematics is simple, as the basic equations of 
forward kinematics easily determines the end-effector 
position and orientation. The modified Denavit - 
Hartenberg (DH) convention and methodology was used 
to derive the kinematics. 

The following convention was followed: (x0, y0, z0) to 
(x4, y4, z4) represent the local coordinate frames at the five 
joints respectively, (x5, y5, z5) represented the local 
coordinate frame at the end-effector, α, γ and θ are the 
rotation angles about x, y, and z axis respectively. The 
base local coordinate frame (x0, y0, z0) overlapped with 
the global coordinate system (X, Y, Z) as it was attached 
to the base frame.  

Based on the DH convention, the transformation 

matrix from joint n to joint n + 1 is given by: 

, where θ and α are DH parameters and cθi, sθi represent 
cos (θi) and sin (θi), respectively. 

Another mathematical entity which is frequently used 
for describing the frame motion is a 3×3 rotation 
matrix( ����� ) that is essentially the first 3 rows and 3 
columns of the transformation matrix ( ����� ). The 
transformation matrices for all the frames are listed here. 
Hence, the position and orientation of the end-effector 
can be calculated if all the joint angles are given. Once 
the joint angles are found, other kinematic variables can 
be calculated through forward kinematics using the 
following equations. ��	��	� = � �����	� + �̇�	� ���	��	� (2) 

�̇�	��	� = � �̇����	� + � �����	� × �̇�	� ����	��	� + �̈�	� ���	��	�  (3) 

�̇�	��	� = �� �̇�� × � +�	�� ��� × � ��� × ��	�� � + �̇�� ���	�  (4) 

�̇��	��	� = �̇�	��	� × �� + ��	��	� × � ��	��	� × ���	�� ��	��+ �̇�	��	�  
(5) 

Here, ‘i’ varies from 0 to 5. Furthermore �  is the 
angular velocity of a link, �̇ is the angular acceleration of 
a link, �̇ is the angular velocity of a joint motor, �̈ is the 
angular acceleration of a joint motor, � is the velocity of 
a link, �̇ is the acceleration of a link and �is the distance 
from the joint. A subscript c indicates the reference to the 
center of mass of a link. ���	��	� is the unit vector along Z-
axis of the frame i+1 . All the above mentioned quantities 

are 3×1 column vectors (for x, y and z axis). 

3.2 Inverse kinematics 

Inverse kinematics, as the name suggests compliments 
the forward kinematics. It deals with identifying the joint 
angles when the position and orientation of end effector 
is given. This is very much useful if the robot is to follow 
a predetermined path.  

The non-linearity involved in forward 
kinematicsmakes the solution to the inverse kinematics 
not only difficult but also non-unique. A single strategy 
to tackle the challenging of inverse problem is by using 
translation Jacobian matrices. This approach isused in 
this work. The results obtained using Jacobian matrices 
are in close agreement with the actual angles, provided 
that the motion imparted to the robot is small between 
two successive measuring positions. 

Let X represent a 6×1 column vector containing the 
end positions and orientation of the end effector tip.Then 
the Jacobian (�) for the base-tool transformation matrix 
0T6 is defined as: 

� = � �����
�����

�����
�����

������ (6) 

where ��  represents the corresponding D-H parameter. 
The forward kinematic equation is:  �� = �(��, ��, ��, ��, ��)�� (7) 

where � represents 5×1 the column vector containing the 
relevant D-H parameters. As both sides are deterministic, 
it is possible to invert the Jacobian using erstwhile �� and 
obtain the value of �Ɵ and subsequently the next set of ��, 
according to the equation, �Ɵ =  ���(��, ��, ��, ��, ��)��                    (8) Ɵ��! =  Ɵ + �Ɵ                             (9) 

It is clearly seen that the Jacobian is a matrix of 
partial derivate of the position and orientation with 
respect to the five joint angles. Inverse solutions for the 
velocity and acceleration of each link with respect to its 
frame i.e. �̇  and �̈ can be obtained by directly 
differentiating the obtained values of �. If the simulation 
is done in discrete steps, it suffices to differentiate using a 
first order scheme to obtain the required derivatives.  

3.3 Trajectory planning 

Our simulation requires, the path (trajectory) as closely 
spaced discrete points in ADAMS environment 3D space 
and whose coordinates are stored in a database (Microsoft 
Excel Spreadsheet), using a specially-constructed macro 
routine. These points are taken as guides in planning the 
path to be taken by the robot using the command of 
inbuilt database read. The interpolation between any pair 
of these consecutive points is given as a cubic polynomial: �(") = #� + $�" + %�"� + &�"�                  (10) 

Here i is the storing indexed positions (points) in the 

����� = ' *�� −-��-��*.��� *��*.��� 0 /���−-.��� −-.�����      -��       *��-.���0 0 *.��� *.�����0 1 2 (1) 
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database. The curve is constructed with two basic 
constraints. Firstly, the velocity at the starting point and 
the ending point are zero. Secondly, the velocity at the 
intermediate points are unique. The coefficients of the 
polynomials is solved using a Tri-Diagonal Matrix 
Algorithm (TDMA). 

The only disadvantage of a cubic interpolation is the 
jerks in �("). As we can clearly see the second derivative 
of �(") yields a linear function which will change 
between a pair of consecutive input points. Though this 
could have been avoided by a quadratic polynomial, it 
would render the equation solution-less due to the 
constraints involved. 

4 Dynamic analysis 
Dynamic analysis is the study of motion with regard to 
the causal entities (forces and torques). Dynamic 
modeling is vital for simulation and implementation of 
control algorithm. The Newton-Euler methodology used 
here is based on Newton’s second law,in order to 
determine inverse dynamics that is used in this paper [6].
This equation can describe the behavior of a robot 
manipulator link-by-link and joint-by-joint from base to 
end-effector, called forward recursion and also transfer 
the essential information from end-effector to base frame, 
called backward recursion.  

The forward recursion dynamic equations for the 
force and net moment acting on a joint are: 3�	��	� = 4�	� �̇�	��	� �                                   (11) 

5�	��	� = 6�	�789: �̇�	��	� + ��	��	� × 6 �              �	��	��	�789: (12) 

where 3 is the force acting on a link, 5 is the moment 
acting on a link, 4 is the mass of a link, �is the angular 
velocity of a link, �̇ is the angular acceleration of a link, � ̇ is the acceleration of a link and 6��  is the moment of 
inertia of a link ‘i’ about its center of mass. 6�� is a 3×3 
matrix and function of mass of the body and geometry. 
The rest of the quantities are 3×1 column vectors (for x, y

and z axis). 
The inverse recursion dynamic equations for 

calculating the joint forces and joint torques are: ;�� = � ;�	��	��	�� + 3��                                (13) <�� = 5�� + � <�	��	��	�� + ���� × 3�� + ��	�� ×� ;�	��	��	��                               (14) >� = <�� ? ����                                    (15) 

where;  is the force acting on a joint, < is the moment 
acting on a joint and > is the component of < along the 
local rotational axis. These quantities are 3×1 column 
vectors (for x, y and z axis). A subscript c indicates the 
reference to the center of mass of a link. 

Based on the same, required forces and joint torques 
can be calculated easily. It is noted that a pseudo-force is 
applied on each and every link that simulates gravity in 
real life situations by explicitly defining the acceleration 
of the base to be equal to @ in the upward direction. Also 

the maximum force and torque that the end effector 
experiences are clearly specified for any simulation.

5 Control systems 
Robotic control is considered to be the spine of robotics. 
It involves making a robot manipulator to perform 
operations automatically and precisely with the help of 
controllers. Hence it is a vital part in all modern robots. 
Typically, the controllers take the form of an equation or 
an algorithm which is realized via specialized computer 
programs.  

Present industrial systems use a combination of 
proportional, integral and derivative (PID) control. This 
particular method has a wide range of applicability, ease 
of implementation and is very robust, while sacrificing 
some accuracy in comparison to non-linear control 
methods.The values of AB, AC  and A� in the PID control 
loop can be fixed based on the response pattern. With any 
control system, the key parameters are rise time, 
overshoot, settling time, and the steady state error for a 
step input. Each of the three parameters (AB, AC, A�) have 
distinct effects on the four output parameters above, and 
fine tuning is necessary to obtain the best possible 
response. MATLAB also offers a PID tuning algorithm 
that can help in deciding the values of AB, AC and A� after 
an iterative process. In the given example, the value of AB, AC and A� are approximately 10 each. The values are 
obtained with the help of MATLAB toolbox mentioned 
above. In this simulation a simple PID control system 
was implemented for each individual angle outputs. 

6 Simulation and results 
Co-simulation between ADAMS and MATLAB is of 
paramount importance due to their efficient simulation 
platform. An acceptable format for the inputs and outputs 
of each program is required to execute the co-simulation. 
The objective of co-simulation is to establish a 
connection so that any change in one of the programs is 
reflected and further affects the other one, thus utilizing 
the benefits of both the program modules [7]. To provide 
a simulation that enables ADAMS to recognize the 
exported output from MATLAB, there is a need for 
activating the ‘Control’ plug-in in the ‘Plug-in Manager’ 
of ADAMS and defining the robot as a plant. After 
activation, a new window appears for the determination 
of plant and its inputs and outputs. 

To call the generated plant in MATLAB, the plant 
name should be entered in the ‘MATLAB command 
window’ such that the computer recognizes and displays 
the input and output information. By executing the 
‘Adams_sys’ command, the block containing the 
information about the dynamic model is created and 
loaded in the SIMULINK environment. The ‘Adams-sub’ 
block created in the SIMULINK should be configured as 
shown in Figure3. This is a vital component, as this block 
is included in the master simulation and control model, 
which is again defined in SIMULINK as a separate entity.  
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The master model, referred to as Master here onwards 

contains all the modules of the previous sections, which 
again uses all the concepts (transformation matrices, 
inverse kinematics) mentioned earlier. The Master 
contains the trajectory planning module, inverse 
dynamics module, mainframe model of the robot and its 
associated control systems. The modules are made of 
snippets of MATLAB codes hence the blocks are also 

user-defined and embedded MATLAB functions. Outputs 
of the dynamics block represent the plant inputs of the 
robot in ADAMS, namely the joint torques. By starting 
the simulation in SIMULINK, the signals denoting the 
joint torques enter the plant and hence runs ADAMS 
simultaneously which continues to reach the definite final 
state. The system is also capable of adjusting the size of 
the discrete steps for each calculation. The generated 
trajectory functions for each motor yields the end effector 
to track the desired position and orientation. The flow 
diagram indicating path generation and inverse dynamics 
are shown in Figure 4.  

By the end of the simulation, the end effector position 
in the work space is depicted in a scope of MATLAB- 
SIMULINK. During the simulation, real-time interactive 
process was shown on the ADAMS interface [8]. By 
comparing the results with the forward kinematics 
solution, it can easily be inferred that the simulation runs 
with the desired accuracy and precision.The graphs were 
generated in MATLAB-SIMULINK using the ‘Scope’ 
module. From simulation results (Figure 5), it can be seen 
that the links can track the given trajectory curve well 
with smallerror. 

7 Conclusions 
In this paper, the virtual development of a 5-DOF robot 
has been done using SolidWorks and the simulation, 
testing and validation were carried out using ADAMS 
and MATLAB-SIMULINK. The validity of the control 
loop was put to test by imparting a sinusoidal disturbance 
to the joint torques.Please do note that this observed error 
was because of the purposeful sinusoidal disturbance. 
Furthermore, loading the .res file into ADAMS post-
processor, it was possible to cross-check all the inertia 
forces, gravity, centrifugal forces, Coriolis forces and 
instantaneous power of the driver motorwith the results 
that were obtained from calculation in MATLAB.
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