Mechano-chemical Synthesis of NaAlH₄: Optimization of Reaction Conditions

Won-Bi Han¹,a, Ki-Kwang Bae¹,b, Kyoung-Soo Kang¹,c, Seoung-Uk Jeong¹,d, Won-Chul Cho¹,e Chang-Hee Kim¹,f and Chu-Sik Park¹,g,*

¹Hydrogen Energy Research Center, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
awbhan@kier.re.kr, bkkbae@kier.re.kr, ckskang@kier.re.kr, dsujung@kier.re.kr, emizkee@kier.re.kr, fchk14@kier.re.kr, g,*cspark@kier.re.kr (Corresponding author)

Abstract. NaAlH₄ was mechano-chemically synthesized with high energy ball-milling method. The effect of synthesis conditions such as milling time, H₂ pressure, chloride catalysts, and solvents was investigated to enhance the synthesis of NaAlH₄. Among the chloride catalysts, TiCl₄ showed the highest H₂ pressure decrease which means the highest NaH conversion to NaAlH₄. Furthermore, when the NaAlH₄ was synthesized with THF solvent, it exhibited the higher H₂ pressure decrease than that of sample prepared without THF solvent. This is mainly due to the synergy effect of TiCl₄ catalyst and THF solvent.

1 Introduction

Hydrogen has been attracted as a clean energy carrier. One of the important issues in hydrogen usage is to establish safe and reliable hydrogen storage method [1]. Complex hydride is safer than the commercial storage methods storing the hydrogen in compressed or liquid form. In addition, due to the large hydrogen storage capacities, complex hydride has been attracted in recent years [2,3]. NaAlH₄ has been studied due to its reversibility when it is synthesized with suitable catalyst [2]:

\[
\begin{align*}
\text{NaAlH}_4 & \leftrightarrow 1/3 \text{Na}_3\text{AlH}_6 + 2/3 \text{Al} + \text{H}_2 \\
1/3 \text{Na}_3\text{AlH}_6 + 2/3 \text{Al} & \leftrightarrow \text{NaH} + \text{Al} + 1/2 \text{H}_2
\end{align*}
\]

(1)

(2)

Bogdanovic and Schwickardi discovered that desorption kinetics of NaAlH₄ can be enhanced, when it is used with ball-milling method and catalysts [2,3]. The advantage of ball-milling method is it can directly prepare the catalysts doped NaAlH₄. Effect of milling conditions such as pressure, temperature, and catalyst has been studied [4].

* Corresponding author: cspark@kier.re.kr

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
Among various transition and rare earth metals, Ti chloride showed the most effective [5]. Recently, Anton studied various form of chloride catalysts in dehydrogenation step [6,7]. Some researchers studied the synthesis of NaH and Al in tetrahydrofuran (THF) in order to prepare the NaAlH₄ doped with Ti [4, 8]. Srinivasan et al. reported that the NaAlH₄ synthesized with Ti catalyst in solvent shows better dehydrogenation property than that of sample prepared by dry milling method. [8]

In the present work, high energy ball-milling method was used as a mechano-chemical synthesis of NaAlH₄. After the optimization of milling conditions (milling time and pressure), chloride catalysts (TiCl₄, NiCl₂, MgCl₂, GaCl₃) were studied to replace the Ti chloride catalyst. Furthermore, NaAlH₄ was prepared in solvent to check the effect of solvent. The effect of each parameter has been interpreted through the H₂ pressure change.

2 Experimental

2.1 High Energy Ball-milling

NaAlH₄ was prepared by a high energy ball-milling method. NaH (95%, Sigma aldrich) and Al (99%, Samchun chemicals) powders (1:1) were combined with 3 mol.% of chloride catalysts. The catalysts were TiCl₄ (99%, Kanto chemical), MgCl₂ (98%, Sigma aldrich), NiCl₂ (98%, Sigma aldrich), GaCl₃ (98%, Sigma aldrich). The powder to Cr ball ratio was fixed as 1:30. After putting the power and Cr balls in the reactor, H₂ was added through the valve up to 70 bar. The high energy ball-milling method was carried out in a planetary Fritsch Pulverisette 5. Milling of powders was carried out under the 300 rpm for 15 to 120 hr. H₂ pressure was checked with pressure indicator connecting with valve, before and after the ball-milling reaction. The difference of H₂ pressure (/g507P) represents the activity of reaction in this study. 100 mL of THF (99.5%, Samchun chemicals) and diethyl ether (99%, Sigma aldrich) were used to check the effect of solvent. Powder handling was done in the glove box (99.999%, Ar) to prevent the exposure of oxygen and water.

2.2 Characterization

XRD patterns were recorded using a Rigaku D/MAX-IIIC diffractometer (Ni filtered Cu Ka radiation, 40 kV, 150 mA). The samples were covered by Kapton film to avoid any exposure to oxygen and water. The crystallite size was calculated using the Debye–Scherrer equation. H₂ adsorption and desorption properties were conducted under 80 bar of H₂ and vacuum condition at 120 °C respectively.

3 Results and Discussion

3.1 Optimization of Reaction Conditions

NaAlH₄ milled for 60 hr without catalyst showed no NaAlH₄ peak in XRD and H₂ pressure change. Therefore, 3 mol.% TiCl₄ catalyst was chosen to optimize the reaction conditions. NaH and Al powders with 3 mol.% TiCl₄ catalyst were milled for 0 to 120 hr. Fig.1 shows the H₂ pressure after the high energy ball-milling reaction with time change. NaAlH₄ shows the dramatic H₂ pressure decrease at 60 hr of milling time. The H₂ pressure increases after 60 hr of milling due to the partly decomposition of NaAlH₄.
Fig. 2 depicts the reacted NaH amount with H2 pressure change from 30 to 70 bar after the 30 hr of milling. The mol of reacted NaH increases linearly with an increase of H2 pressure. The reacted NaH mol increases in the following order: 30 bar (0.028 mol) < 40 bar (0.031 mol) < 50 bar (0.039 bar) < 70 bar (0.044 mol). This suggests that the H2 pressure has positive effect in increase the reaction rate of conversion of NaH to NaAlH4. Based on these results, the remaining high energy ball-milling reactions were carried out for 60 hr under 30 H2 bar. To clarify the effect of catalyst clearly, 30 bar of H2 was chosen instead of 70 bar of H2.

3.2 Optimization of Chloride Catalyst

Fig. 3 depicts the XRD patterns of synthesized samples with 3 mol.% chloride catalysts. The bottom pattern is the XRD peak of kapton film. According to the XRD patterns, sample synthesized with TiCl4 catalyst shows the NaAlH4 peak (PDF #. 85-0374). However, Al and
Na$_3$AlH$_6$ (PDF #. 42-0786) peaks are found on the other samples synthesized with chloride catalysts (MgCl$_2$, NiCl$_2$, GaCl$_3$). The crystallite size of NaAlH$_4$ synthesized with TiCl$_4$ catalyst is 22.4 nm. This suggests that the only TiCl$_4$ catalyst is effective in synthesis of NaAlH$_4$.

![XRD patterns of samples synthesized with chloride catalysts](image)

Fig.3. XRD patterns of samples synthesized with chloride catalysts

H$_2$ adsorption and desorption properties are shown in Fig.4. NaAlH$_4$ prepared with TiCl$_4$ was degassed at 120 °C under a vacuum and adsorbed H$_2$ at 120 °C under H$_2$ 80 bar. 4 bar of H$_2$ adsorbed in 2 hr and 3.6 bar of H$_2$ degassed in 6 hr. This suggests that the NaAlH$_4$ prepared with TiCl$_4$ has a hydrogen storage property.

![H$_2$ pressure vs. time](image)

(a)
3.3 Effect of Solvent

Table 1 summarizes the reacted NaH amount with solvents. To compare the effect of solvent, the result in Fig. 2 which was milled for 30 hr under 70 bar H₂ was chosen as a criteria. In the case of addition of diethyl ether as a solvent, 0.039 mol of NaH reacted. This suggests that diethyl ether has the negative effect in synthesis of NaAlH₄. In contrast, sample prepared in THF solvent exhibits higher reacted NaH mol (0.057 mol) than that of sample prepared without solvent (0.044 mol). Therefore, it suggests that the THF has the synergy effect in NaH conversion to NaAlH₄ when it is used with TiCl₄ catalyst.

Table 1. Reacted Nah Amount With Solvents

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Diethyl ether</th>
<th>None</th>
<th>THF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reacted NaH (mol)</td>
<td>0.039</td>
<td>0.044</td>
<td>0.057</td>
</tr>
<tr>
<td>Difference (mol)</td>
<td>-0.005</td>
<td>+0.013</td>
<td></td>
</tr>
</tbody>
</table>

4 Conclusion

NaH and Al powders were milled under various reaction conditions (milling time, H₂ pressure, chloride catalyst, solvent) to synthesize the NaAlH₄. Among the reaction conditions, 60 hr of milling time and 30 bar of H₂ pressure were chosen to prepare the NaAlH₄. XRD results showed that the TiCl₄ plays a key role in synthesis of NaAlH₄. Furthermore, NaAlH₄ prepared with TiCl₄ showed the 4 bar of H₂ adsorption and desorption properties at 120 °C. The improved TiCl₄ catalyst activity was shown when it is used with THF solvent under 70 bar H₂ with 30 hr of milling. Therefore, the THF has the synergy effect in synthesis of NaAlH₄ with TiCl₄.

5 Acknowledgements

This study was performed under the mid- and long-term Nuclear R&D Projects supported by the Ministry of Science, ICT and Future Planning (2012M2A8A2025688), Republic of Korea. This work was also conducted under the framework of Research and Development Program of Korea Institute of Energy Research (KIER) (B6-2420-02). This work was also supported by the New & Renewable Energy Core Technology Program of the Korea Institute
of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea.(No. 20153030040910)

References