Hydrothermal synthesis of $\text{Li}_{4-x}\text{Na}_x\text{Ti}_5\text{O}_{12}$ and $\text{Li}_{4-x}\text{Na}_x\text{Ti}_5\text{O}_{12}$/graphene composites as anode materials for lithium-ion batteries

Jiping ZHU 1, Yangyang ZHANG 1, Jie ZHU 1, Rui DUAN 1 and Yumin DA 1

1 School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, China

Abstract: A potential Lithium-ion battery anode material $\text{Li}_{4-x}\text{Na}_x\text{Ti}_5\text{O}_{12}$ (0 ≤ x ≤ 0.15) has been synthesized via a facile hydrothermal method with short processing time and low temperature. The XRD and FE-SEM results indicate that samples with Na-doped are well-crystallized and have more homogeneous particle distributions with smaller overall particle size in the range of 300-600nm. Electrochemical tests reveal that Na-doped samples exhibit impressive specific capacity and cycle stability compared to pristine $\text{Li}_4\text{Ti}_5\text{O}_{12}$ at high rate. The $\text{Li}_{3.9}\text{Na}_{0.1}\text{Ti}_5\text{O}_{12}$ electrode deliver an initial specific discharge capacity of 169mAh/g at 0.5C and maintained at 150.4mAh/g even after 40 cycles with the reversible retention of 88.99%. Finally, a simple solvothermal reduction method was used to fabricate $\text{Li}_{3.9}\text{Na}_{0.1}\text{Ti}_5\text{O}_{12}$/graphene ($\text{Li}_{3.9}\text{Na}_{0.1}\text{Ti}_5\text{O}_{12}$/G) composite. Galvanostatic charge-discharge tests demonstrate that this sample has remarkable capacities of 197.4mAh/g and 175.5mAh/g at 0.2C and 0.5C rate, respectively. This indicates that the $\text{Li}_{3.9}\text{Na}_{0.1}\text{Ti}_5\text{O}_{12}$/G composite is a promising anode material for using in lithium-ion batteries.

Key words: $\text{Li}_4\text{Ti}_5\text{O}_{12}$; Na-doping; graphene; hydrothermal synthesis.

1. Introduction

Lithium-ion batteries are a new generation battery that have been rapidly developed over the past few decades. Compared to other second generation batteries, lithium-ion batteries have numerous merits, such as high energy densities, long cycle lifetime, high lithium insertion potential, safety and environmentally friendly, which allows them to be widely used in a range of devices from portable electronics to electric vehicles[1-2]. In contrast with the current commercial graphite anode materials, lithium titanate is a new generation anode material with excellent electrochemical and dynamic properties. Spinel $\text{Li}_4\text{Ti}_5\text{O}_{12}$ has outstanding cycle performance and favorable stable structure due to the zero strain during Li-ion insertion/extraction and not distort in dimensional or volume at high charge/discharge rates. It offers a long voltage-plateau around 1.55V versus Li/Li$^+$ compatible with polymer electrolytes and high-voltage cathodes, therefore providing an electrode system with much improved safety characteristics and excellent reversibility. However, there are limits to its commercial application due to its intrinsically poor electrical conductivity, sluggish lithium-ion diffusion coefficient and unsatisfactory specific capacity [3-5].

In order to overcome these serious blemishes of $\text{Li}_4\text{Ti}_5\text{O}_{12}$ material, researchers have done a lot of work about these issues. Summarizing the previous reports: three approaches have been used to improve electrochemical performance: (1) explore the effective synthesis route to get nano-sized particles. Nanoscale particles can shorten the Li-ion diffusion distance and significantly broaden contact between electrode and electrolytes [6-11]. (2) introduce the
favorable conductive material into the Li$_4$Ti$_5$O$_{12}$, such as a carbon materials or metal powder [10-14]. Recently, Chen et al successfully synthesized a mesoporous Li$_4$Ti$_5$O$_{12}$ material that had grown on the graphite oxide (rGO=18wt%). This material possesses impressive high-rate performance with an initial discharge capacity of 132mAh/g at 40C [15]. (3) modified Li$_4$Ti$_5$O$_{12}$ with metal or non-metal ions at Li, Ti or O sites to enhance its electronic conductivity, such as Nb$^{5+}$, Ni$^{2+}$, Cu$^{2+}$, Ta$^{5+}$, Br$^{-}$.

Graphene (G), a two-dimensional macromolecular sheet of carbon atoms with a honeycomb structure, is well known as a novel material in lithium-ion batteries. Two-dimensional graphene sheets with excellent electronic conductivity and mechanical properties have gained interest as a prominent conductive additive for hybrid nano-structured electrodes [16]. Introducing graphene into the Li$_4$Ti$_5$O$_{12}$ material via mixing, coating or by growing the Li$_4$Ti$_5$O$_{12}$ particles directly on graphene had obtained great progress [14-15]. Zhu et al. [17] synthesized a composite material by implanting graphene into Li$_4$Ti$_5$O$_{12}$ nanofibers. Compared to the original Li$_4$Ti$_5$O$_{12}$ electrode, this graphene composite presents superior electronic conductivity, long-term cycling stability and outstanding rate performance.

This paper proposes to employ a facial hydrothermal method to synthesize the Li$_4$Ti$_5$O$_{12}$ anode material using LiOH and Ti(OC$_4$H$_9$)$_4$ as starting materials. Compared to the conventional high temperature solid-state method, this facile hydrothermal route can gain more tiny particles with well crystallinity, and more particles evenly distributed. However, pure Li$_4$Ti$_5$O$_{12}$ does not meet the requirements for a competent anode electrode. Herein, different mole ratios of Na have been substituted for Li, and the effect of Na-doping on the electrochemical performance has been investigated. The end result was in order to select the optimum content of Na-doping to improve high-rate performance and electronic conductivity. To our knowledge, modified spinel Li$_4$Ti$_5$O$_{12}$ with low content of sodium using hydrothermal method has not been reported until now. Finally, a simple solvothermal reduction method was used to fabricate the solvothermal reduction method has smaller overall particle size and larger specific surface area, and can form a conductive network by means of using two-dimensional structure of graphene, which greatly increase the electronic conductivity and diffusivity of the Li-ion. Electrochemical tests show it has outstanding electrochemical performances, which reveal that this material is a promising anode material for lithium-ion batteries.

2. Experimental

2.1 Synthesis of Li$_4$Ti$_5$O$_{12}$ with Na-doping

All raw materials involved in this work were received without any further processing. Pure Li$_4$Ti$_5$O$_{12}$ was synthesized via a hydrothermal method with LiOH.H$_2$O and Ti(OC$_4$H$_9$)$_4$ as raw materials. Initially, 17mL tetrabutyl titanate (Ti(OC$_4$H$_9$)$_4$) was dissolved into ethanol under vigorously stirred to form a clear solution. A certain quantity of lithium hydroxide monohydrate was dissolved in deionized water to form a 2mol/L LiOH solution. Followed, the LiOH solution was added into the base solution drop and drop with constant stirring. Then, the ivory solution was transferred into a Teflon-lined autoclave and held at 180°C for 24h. Until the solution cooled to room temperature naturally, washed the precursor with deionized water and ethanol for several times via centrifuging, and lastly dried in an oven for approximately 12h. Finally, the as-prepared precursor was calcinated in a muffle at 700°C for 8 h with a temperate ramp rate of 4°C min$^{-1}$ to obtain Li$_4$Ti$_5$O$_{12}$ powder. Excess LiOH.H$_2$O (8mol%) was added to compensate the Li source loss in the high temperature calcination process.

In order to obtain the Na-doped samples, LiOH and NaOH solution were added into the base solution drop and drop with constant stirring. Then, the ivory solution was transferred into a Teflon-lined autoclave and held at 180°C for 24h. Until the solution cooled to room temperature naturally, washed the precursor with deionized water and ethanol for several times via centrifuging, and lastly dried in an oven for approximately 12h. Finally, the as-prepared precursor was calcinated in a muffle at 700°C for 8 h with a temperate ramp rate of 4°C min$^{-1}$ to obtain Li$_4$Ti$_5$O$_{12}$ powder. Excess LiOH.H$_2$O (8mol%) was added to compensate the Li source loss in the high temperature calcination process.

In order to obtain the Na-doped samples, LiOH and NaOH solution were added into the base solution simultaneously while undergoing vigorous stirring using a magnetic stirrer, other steps were performed as above. Li$_{4-x}$Na$_x$Ti$_5$O$_{12}$ (x=0, 0.05, 0.1, 0.15) samples were gained by adjusting the doping content of NaOH.

2.2 Synthesis of Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$/G composite

Graphite oxide nanosheets were synthesized by a modified Hummers method using the natural graphite powders as raw material. A 2.0g/L graphite oxide solution
(GO) was prepared by dispersing graphite oxide powder into an ethanol solvent with ultrasonication for 0.5 h. In order to prepare the Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$/G composite, 1g Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$ was dissolved in 20mL ethanol and vigorously stirred for 30min, then the previously prepared GO solution was transferred into the Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$ solution slowly with 3wt% content of GO. The mixture was next transferred into Teflon-lined autoclave and maintained at 120 °C for 12h. A gray Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$/G composite powder was obtained by washing and drying the resulting product.

2.3 Material characterization and electrochemical measurements

The crystalline structure of the prepared samples was identified by X-ray powder diffraction measurements with Cu Ka radiation. A Field emission scanning electron microscope (FE-SEM, SU8020) and Energy Dispersive Spectrometer (EDS) were used to observe the particle morphology and analyze composition of the samples.

In order to test the electrochemical performance of the as-prepared anode materials, anode material, acetylene black, and polyvinylidene fluoride (PVDF) binder at a weight ratio of 8:1:1 was mixed and dissolved in appropriate content of N-methylpyrrolidone (NMP) to form homogeneous slurry. The prepared slurry was then brushed onto a thin aluminum foil substrate using a doctor-blade and dried in a vacuum oven at 120°C for 12h, then cut into slices with a diameter of 14mm to obtain a working electrode. Pure lithium foil was used as the counter electrode. The cells were assembled in an argon-filled glove box and were tested using CR2032 coin-type half cells. Celgard2400 microporous polyethylene membrane was used as the separator, and 1M LiPF$_6$ dissolved in dimethyl carbonate (DEC)/ethylene carbonate (EC) (1:1 by volume) as the electrolyte. The charge/discharge test was carried out on a CT3008W cell test instrument with a potential range of 1.0-2.5 V under different current densities at room temperature.

3. Results and discussion

3.1 The effect of Na-doping on crystal structure, morphology and electrochemical performance

The precursor of Li$_4$Ti$_5$O$_{12}$ was prepared through a hydrothermal reaction and calcined at low-temperature to obtain the Na-doped Li$_{4}$Ti$_5$O$_{12}$ powders. The XRD patterns of the as-prepared Li$_4$Ti$_5$O$_{12}$ sample with and without Na-doping are depicted in Fig.1(a). The diffraction peaks of all investigated samples can be attributed to expected reflections of spinel Li$_4$Ti$_5$O$_{12}$ with a space group of Fd-3m [5]. No impurity peaks were observed, which reveal that a small amount of Na$^+$ ions have entered the lattice of Li$_4$Ti$_5$O$_{12}$ without causing large changes in its structural characteristics. In order to clearly understand the effects of Na-doping in crystal structure, the enlarged peak of (111) plane in the pristine Li$_4$Ti$_5$O$_{12}$ and Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$ samples are shown in Fig.1 (b).

It is easily observed that the Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$ samples undergo a slight shift toward lower degrees, which demonstrates that the lattice parameter increases due to the Na-doping. This is likely attribute to the larger size of the Na$^+$ ion (0.102 nm) replace the site of Li$^+$ ion (0.076nm). In addition, the lattice parameter increase is beneficial to enhance the specific capacities of materials.

FE-SEM images of pristine Li$_4$Ti$_5$O$_{12}$ and Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$ are shown in Fig.2. Although all samples are aggregated due to the final calcination process, the Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$ sample has more homogeneous particle products and more narrow particle-size distributions compared to pristine Li$_4$Ti$_5$O$_{12}$. The sample is well crystallized with a particle size in the range of 300-600nm. In order to gain more information, EDS was carried out to confirm that Na was present in the Na-doped materials. The three different colored bright spots correspond to the presence of Ti, O and Na in Fig.3, respectively. Combined with the above phase analysis, Na$^+$ ions can be considered conclusively to have entered the lattice structure of Li$_4$Ti$_5$O$_{12}$. It can also be noted that all elements are uniformly distributed within the sample.
Fig. 1 (a) XRD patterns of the Li$_{4-x}$Na$_x$Ti$_5$O$_{12}$ ($x=0$, 0.05, 0.1, 0.15) materials; (b) Enlarged (111) peaks of the Li$_{4-x}$Na$_x$Ti$_5$O$_{12}$ ($x=0$, 0.1) materials

Fig. 2 FE-SEM images of Li$_{4-x}$Na$_x$Ti$_5$O$_{12}$ ($x=0$, 0.1): (a) $x=0$, (b) $x=0.1$

Fig. 3 EDS element mapping of Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$

Fig. 4 Voltage versus Capacity of Li$_{4-x}$Na$_x$Ti$_5$O$_{12}$ ($x=0$, 0.1, 0.15) at different rates: (a) $x=0$, (b) $x=0.1$, (c) $x=0.15$
The specific capacities of all samples were tested through the galvanostatic charge/discharge method by a CT3008W cell test instrument. The initial charge/discharge curves of Li₄₋ₓNaₓTi₅O₁₂ (x=0, 0.05, 0.1, 0.15) samples at different current rates are shown in Fig.4. The Li₄Ti₅O₁₂ electrode exhibits a two-phase transition between Li₄Ti₅O₁₂ and Li₇Ti₅O₁₂ during Li-ion insertion/extraction reactions. All anode electrodes with and without Na-doping have a stable voltage platform at current rates of 0.2C or 0.5C, and the voltage platform occupies 80% of the discharge curve with Li₄Ti₅O₁₂. This reveals that a stable Li₄Ti₅O₁₂ material can be successfully synthesized by means of a facile hydrothermal method. In addition, the results consistently confirm that Na-doping does not alter the structure of spinel Li₄Ti₅O₁₂.

The initial specific discharge capacity of Li₄₋ₓNaₓTi₅O₁₂ (x=0, 0.05, 0.1, 0.15) electrodes at 0.2C rate were measured as 167.4, 176.7, 181.9 and 166.9mAh/g, respectively. All samples have a high capacity and close to or higher than theoretic capacity. This may be due to the Li-ions have enough time to move between anode and cathode electrodes and the reaction motivation can keep pace with the charge current at low rate, resulting in a lower electrode polarization and higher capacity.

The specific capacities of the samples decrease when the charge/discharge current density increases, the effect is particularly noticeable in the pristine sample. Fig.4 shows that the initial specific discharge capacities of Li₄₋ₓNaₓTi₅O₁₂ (x=0, 0.05, 0.1, 0.15) electrodes at 0.5C rate are 154.0, 169.0 and 158.6mAh/g, respectively, with the Li₃.₇Na₀.₃Ti₅O₁₂ electrode has the highest capacity among all samples. When the discharge rate increases to 1C, the capacity of the pristine electrode decreases to 137.1mAh/g, but the Li₃.₇Na₀.₃Ti₅O₁₂ sample retains at 155.7mAh/g, a significant improvement over the pristine sample. This reveals that Na-doping plays an important role in the improvement of reversible capacities at high rates. This may be due to the comparatively large size of the Na⁺ ions (0.102nm) replace the Li⁺ ions (0.076nm) and lead to the lattice parameter increase, which in turn may lead to an increased in electronic/ionic conductivity and reversible specific capacity. However, the large ion radius of Na⁺ ions substitute Li⁺ ions may hinder the ion insertion. When the concentration of Na⁺ is too low or too high, hindering effects may play a relatively leading role. Therefore, it is important to achieve the appropriate ratio to enhance the electrochemical properties of Li₄Ti₅O₁₂.

Fig.5 Cycling performance of the Li₄Ti₅O₁₂ and Li₃.₇Na₀.₃Ti₅O₁₂ samples at 0.5C-rate

Cycling performance of Li₄Ti₅O₁₂ and Li₃.₇Na₀.₃Ti₅O₁₂ samples at a current rate of 0.5C are shown in Fig.5. The initial discharge capacities of Li₄Ti₅O₁₂ and Li₃.₇Na₀.₃Ti₅O₁₂ have sharply decreased in comparison to the second discharge process, but their capacities become increasingly steady after cycling several times. This phenomenon may be due to the fact that the first cycle is an activation process or a certain degrees of electrolyte decomposing during the charge/discharge process. The result reveals that the initial discharge capacity of Li₃.₇Na₀.₃Ti₅O₁₂ electrode maintains at 169.0mAh/g at 0.5C, and the reversible capacity is retained.
at 150.4mAh/g even after 40 cycles with a capacity retention of 88.99%, higher than the pristine samples of 135.6mAh/g. Based on the above results, Na-doping has been found to result in outstanding cycling stability and excellent high-rate capability.

3.2 Crystal structure, morphology and electrochemical performance of Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$/G sample

The XRD patterns of the pristine sample, Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$ and Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$/G samples are depicted in Fig.6. The XRD patterns of Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$/G with 3wt%GO are completely consistent with Li$_4$Ti$_5$O$_{12}$. As no graphene peaks were found, this indicates that the addition of graphene has not altered the crystal structure of Li$_4$Ti$_5$O$_{12}$, perhaps the GO content is below the limit of detection by XRD.

Fig.7 shows the SEM images of Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$/G composites at different magnifications. Graphene sheets are uniformly distributed among the Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$ particles and efficiently hindered particle regrowth, which lead to the composite have homogeneous powder and narrow particle-size distribution. In addition, the presence of graphene can magnify the contact of interparticle and increase electronic/ionic conductivities, which is great importance in improving electrochemical performance. The following graph (Fig.8) shows the initial charge/discharge curves of the Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$/G sample at 0.2C, 0.5C, 1C, 2C rate, the electrochemical performance has greatly improved compared to the pristine and Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$ samples. This composite exhibits lower potential separation and outstanding reversible capacity no matter what on low or high current rates, possibly due to the addition of graphene. Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$/G composites with a 3wt% of GO have a remarkable reversible capacity of 197.4mAh/g at 0.2C rate, significantly higher than the pristine electrode (167.4mAh/g). The specific capacity decreases as the charge/discharge current rate increases, but even at 0.5C, 1C, 2C current rate, it still can present a discharge capacities of 175.5, 158.8 and 145.3mAh/g, respectively. Furthermore, the cycle performance is also improved due to the introduced of graphene, as described in Fig.9. The irreversible capacity has a large loss after the first cycle. However, it becomes more and more stable after several cycles, with the trend of cycle performance consistent with the pristine sample. The initial specific discharge capacity of the Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$/G electrode is 158.8mAh/g at 1C rate, and maintains at 146.3mAh/g even after 40 cycles, with the reversible capacity retention is 92.13%, higher than the Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$ sample at 87.73%. The results indicate that the cycling performance and capacity have greatly improved due to addition of graphene. Graphene with remarkable specific surface area and extraordinary electronic conductivity can greatly enlarge the contact of interparticles in the composite and change the intrinsic poor electronic and ionic conductivities of Li$_4$Ti$_5$O$_{12}$. In addition, the addition of graphene may effectively create numerous new Li$^+$ storage
sites. This may be the reason why the Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$/G composite has such excellent long-term cycling performance and impressive capacity.

![Fig.8 Initial charge/discharge curves of Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$/G samples at 0.2C, 0.5C, 1C, 2C rates](image)

Fig.8 Initial charge/discharge curves of Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$/G samples at 0.2C, 0.5C, 1C, 2C rates

Fig.9 Cycling performance of the Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$ and Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$/G samples at 1C rate

4. Conclusions

Li$_{4-x}$Na$_x$Ti$_5$O$_{12}$ ($0 \leq x \leq 0.15$) samples were successfully synthesized by a facile hydrothermal method. The results show that doping with Na$^+$ ions do not alter the structure of Li$_4$Ti$_5$O$_{12}$ and the resulting samples are well crystallized with a particle size in the range of 300-600nm. The Na-doped samples have higher specific capacities and excellent cycling stability, with the Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$ electrode showing particularly good electrochemical properties among the four samples. The initial specific capacity of Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$ electrode is 169.0mAh/g at 0.5C, and maintains at 150.4mAh/g even after 40 cycles. Finally, graphene was introduced to the composite by means of a simple solvothermal reduction method with ethanol as the solvent. This approach does not produce poisonous materials and has high efficiency. The initial specific discharge capacity of the Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$/G electrode is 158.8mAh/g at 1C rate, and maintains at 146.3mAh/g even after 40 cycles. The experiment results that the Li$_{3.9}$Na$_{0.1}$Ti$_5$O$_{12}$/G (3wt%) composites exhibit extraordinary electronic conductivity, faster lithium ion diffusivity, high-rate capability and long-term cycling stability, which makes it more practical in applications for lithium ion batteries.

References

ultrafast electrochemical energy storage, Nano Energy, 10 (2014).

