Erratum to: Study on Chloride Ion Penetration Resistance of Rubberized Concrete under Steady State Condition

Nurazuwa Md Noor¹, Daisuke Yamamoto², Hidenori Hamada² and Yasutaka Sagawa²

¹Jamilus Research Center, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia
²Department of Civil and Structural Engineering, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan

Original article:
MATEC Web of Conferences 47, 01004 (2016), DOI: 10.1051/matecconf/20164701004

The abstract of the article should be replaced by the abstract below:

Abstract. In this paper, the effect of crumb rubber, CR as fine aggregate in the concrete to enhance concrete durability against chloride ion diffusion was studied. Chloride ion diffusion in rubberized concrete was tested by migration test under steady state condition. Concrete specimen with water-to-cement ratio of 0.50 was prepared to study the CR effectiveness in comparison with lower water-to-cement ratio. In addition, 10% silica fume, SF was added to provide denser concrete and to understand its effectiveness against chloride ion diffusion. Results showed that chloride transport characteristics were improved by the increasing amount of CR in all mixed due to the fact that CR has the ability to repel water. Meanwhile, rubberized concrete with w/c = 0.35 gave better resistance against chloride ion penetration compared to w/c = 0.50. This was much improved with combination of CR and SF.