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Abstract. Among the most popular methods for the solution of the Initial Value Problem are the Runge–Kutta

(RK) pairs. These methods can be derived by solving a system of nonlinear equations after admitting various

simplifying assumptions. The more simplifying assumptions we consider the more we narrow the solution

space. In [1] Tsitouras presented an algorithm for the construction of Runge–Kutta pairs of orders 5 and 4

satisfying only the so called "first column simplifying assumption". In [2] Famelis and Tsitouras have studied

the ability of Differential Evolution techniques to find solutions satisfying all the order conditions needed for

the derivation of orders 5 and 4 pairs. In this work we propose an modification on the Differential Evolution

strategy for the same problem. The current study will be a guide to the construction of other classes of RK that

have not been presented in the literature.

1 Introduction

We consider the numerical solution of the non-stiff initial

value problem,

y′ = f (x, y), y(x0) = y0 ∈ IRm, x ≥ x0 (1)

where the function f : IR × IRm → IRm is assumed to be

as smooth as necessary. For the approximate solution of

the problem ( 1), the general s−stage embedded explicit

Runge-Kutta pair of orders p(p − 1) advances the approx-

imation of the solution from xn to xn+1 = xn + hn, n =
0, 1, 2, . . . using the formulae

ŷn+1 = yn + hn

s∑
j=1

b̂ j f j and yn+1 = yn + hn

s∑
j=1

b j f j,

where

fi = f (xn + cihn, yn + hn

i−1∑
j=1

ai j f j), i = 1, 2, · · · , s.

As in both formulae ci, ai j are common the coefficients

b̂ j, b j define the (p−1)−th and p−th order approximations

respectively. The coefficients of such a pair of methods can

be presented in a matrix-array form using the following

Butcher Tableau [3, 4]
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where A ∈ IRs×s is strictly lower triangular, the column

vectors bT , b̂T , ∈ IRs and the line vector c ∈ IRs satisfies

c = Ae, e = [1, 1, · · · , 1]T ∈ IRs.

Throughout this paper, we assume that local extrapola-

tion is applied e.g. the p−th order approximation advances

the integration. For the step size selection mechanism the

local error estimate En = ‖yn − ŷn‖ is used. Given a toler-

ance parameter TOL, when En ≤ TOL the mechanism

hn+1 = 0.9 · hn · (
TOL
En

)
1
p

furnishes the next step length. In case of En > TOL, the

current step is rejected and a new approximation of yn+1 is

computed using as step size hn the outcome of the above

formula.

In case that cs = 1, as, j = b j for j = 1, 2, · · · , s− 1 and

bs = 0 � b̂s the First Stage of each new step is the same

As the Last one of the previous stage. This device called

FSAL, possibly introduced in [5], effectively reduces the

stages of the pair by one to s − 1.

The Local Truncation Error (LTE) en+1 is the error of

the integration when yn = y(xn) e.g. the previous step

value is exact. LTE associated with a p−th order RK

method is

en+1 = yn+1 − yn(xn + hn) =

∞∑
q=1

hq
n

λq∑
i=1

TqiPqi = O(hp+1
n )

where

Tqi = Qqi − ξqi/q!
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Table 1. The order conditions RK5(4).

be = 1 bc4 = 1
5

b̂e = 1

bc = 1
2

b(c2 ∗ Ac) = 1
10

b̂c = 1
2

bc2 = 1
3

b(Ac)2 = 1
20

b̂c2 = 1
3

bAc = 1
6

b(c ∗ Ac2) = 1
15

b̂Ac = 1
6

bc3 = 1
4

b(c ∗ A2c) = 1
30

b̂c3 = 1
4

b(c ∗ Ac) = 1
8

bAc3 = 1
20

b̂(c ∗ Ac) = 1
8

bAc2 = 1
12

bA(c ∗ Ac) = 1
40

b̂Ac2 = 1
12

bA2c = 1
24

bA2c2 = 1
60

b̂A2c = 1
24

bA3c = 1
120

with Qqi algebraic functions of A, b, c and ξqi positive

integers. Pqi are differentials of f evaluated at (xn, yn) and

Tqi = 0 for q = 1, 2, · · · , p and i = 1, 2, · · · , λq. λq is the

number of elementary differentials for each order which

coincides with the number of rooted trees of order q. It is

known that λ1 = 1, λ2 = 1, λ3 = 2, λ4 = 4, λ5 = 9, λ6 =

20, λ7 = 48 · · · , etc [6].
The construction of an effectively 6−stages FSAL

Runge-Kutta pair of orders 5(4) (RK5(4)) requires the so-

lution of a nonlinear system of 25 equations e.g. λ1 + · · ·+
λ5 = 17 order conditions for the higher order formula and

λ1 + · · · + λ4 = 8 order conditions for the lower order for-

mula. In Table 1 we present the 25 order conditions of a

RK5(4) pair in matrix operation form. In these equations,

the operation "*" is to be understood as component–wise

multiplication and the power of an vector as a component–

wise power, e.g. c2 = c ∗ c. The rest multiplications

and the matrix powers are the known from linear algebra

vector-matrix operations. So, our problem has a total of

28 parameters (unknowns), namely c2, . . . , c6, b1, . . . , b6,

b̂1, . . . , b̂7, a32, a42, a43, a52, a53, a54 and a62, . . . , a65.

The exact solution of the resulted nonlinear system is

out of question. Only after considering simplifying as-

sumptions, we can use nonlinear optimization techniques

to get accurate enough solutions. In practice nonlinear op-

timization techniques based on some kind estimation of

derivatives such as conjugate gradient, back-propagation

or other Newton-type methods methods are not easily ap-

plicable due to the nature of the problem. Instead non-

linear optimizers based to stochastic direct search seem to

work very efficiently.

2 Differential Evolution

Optimization methods can be divided in two large classes.

The former is continuous optimization where the search

area and solutions are presumed to be situated in a certain

continuous space with its metrics. The later is combinato-

rial optimization where the search area is limited by a fi-

nite number of feasible solutions. Depending on the nature

of the objective function and the constrains, the former

class is subdivided into linear programming , quadratic

programming and nonlinear programming methods. The

last subclass consists of local search methods and global

methods.

The global methods can be either classical meth-

ods, where the global search is successfully realized

as a sequence of solution of local optimization prob-

lems. Alternatively, we have metaheuristic methods which

can be either population-based as Differential Evolution

method, Particle Swarm method and genetic algorithms or

neighborhood-based methods.

Combinatorial methods can either be exact methods

where the enumeration of all sets of solutions results the

global optimum. Due to computational cost such meth-

ods are appropriate for small scale problems. Alternatively

we can consider approximate methods where a partial enu-

meration leads to a near to optimum solution with a bias.

Approximate methods can be either heuristic which are de-

signed for a certain problem and cannot usually used for

other problems or metaheuristic algorithms. Such proce-

dures can be used when we have mixed (continuous and

discrete) parameters.

Differential Evolution (DE) [7–9] is a population

based metaheuristic method which has become more and

more popular for problems that either classical continuous

and combinatorial methods fail to solve. Its virtues are that

a) they do not require special conditions for the properties

of the objective functions and the constrains, b) they can

be applied in both continuous and combinatorial problems

and c) they are extensible on multimodal and multiobjec-

tive optimization. Sensitivity of the process to the control

parameters and the possible high computational cost are

its drawbacks.

In an optimization problem we have an objective func-

tion (usually called a fitness function) f : B ⊆ IRD → IR

for which we want to find a minimum point Xgmin ∈ B
where f attains its global minimum subject to some in-

equality constrains. B is the set of feasible points that

satisfy the constrains. Our aim is to satisfy an optimiza-

tion criterion which consists of the fitness function and

the constrains. Usually nonlinear problems have many

local minimum so the approximate problem solution is

to find a Xappr ∈ B which satisfies the constrains and

f (Xappr) has a desirable precision VTR (value-to-reach)

e.g. | f (Xappr)| ≤ VTR.

DE is a very powerful tool for global optimization

which the applies a procedure of evolution of a population

of individuals in a intelligent manner. DE disposes three

control parameters the population size NP, the differen-
tiation constant F and the crossover constant Cr. Even

though DE is more robust regarding control parameters

(compared to Particle Swarm optimization or evolution-

ary algorithms) the proper choice of the control parameter

values improves the procedure’s convergence.

DE is an iterative process where in each iteration,

called generation g, we work with a "population" of indi-

viduals IPg = {Xgcin ∈ B, cin = 1, 2, . . . ,NP}. Every mem-

ber of this population is a potentially optimal solution and

it is a set of D gens e.g. Xgcin = {xgcin, j j = 1, 2, . . . ,D}.
In the first step of the algorithm, the initialization, an ini-

tial population IP0 is considered, usually randomly and the

fitness function is evaluated on it. Then, in each iteration

(generation) a reproduction scheme updates all the indi-

viduals of the IPg performing a sequential procedure with
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three phases: the Differentiation, the Crossover and the

Selection.

In Differentiation phase three (up to five ) individuals

Xg
1
, . . . , Xg

5
are chosen from the population. The Differen-

tiation strategy is defined by the way of choice which can

be based on random, directed, local or hybrid criteria. For

each individual Xgcin ∈ IPg the result of the Differentiation

is the trial individual:

ω
g
cin = β + F · δ,

where F is the Differentiation constant, β is the base vector

and δ is the difference vector. The base vector can be cho-

sen either randomly, without taking any information about

the values of the fitness function, or locally by choosing

either Xgcin or the best Xgbest individual of the generation.

The difference vector can be formed either randomly or by

using the values of the objective function to determine a

direction which can be viewed as an imitation of the gra-

dient function. Combination of these selections in the dif-

ference vector formation has been proposed too [9]. Thee

most popular strategies are the following:

Strategy 1 best/rand2 where β = Xgbest and δ = Xg
1
− Xg

2
.

Strategy 2 rand1/rand2 where β = Xg
1

and δ = Xg
2
− Xg

3
.

Strategy 3 local/rand2,best1,dir1 where β = Xgcin and δ =
Xgbest − Xgcin + Xg

1
− Xg

2
.

Strategy 4 best/rand4 where β = Xgbest and δ = Xg
1
− Xg

2
+

Xg
3
− Xg

4
.

Strategy 5 rand1/rand4 where β = Xg
5

and δ = Xg
1
− Xg

2
+

Xg
3
− Xg

4
.

Strategy 6 local/hybrid, linear crossover combination of
local,dir1 and rand2 where

β = Xgcin and F · δ = Fcr(X
g
best − Xgcin) + F(Xg

1
− Xg

2
).

In Crossover phase the trial individual ω
g
cin is recom-

bined with Xgcin and a new trial individual ω
g
νcin is formed

by inheriting its gens by using the following probabilistic

rule:

ω
g
νcin, j =

{
ω
g
cin, j, if rand j ≥ Cr

Xgcin, j, otherwise

where j = 1, 2, . . . ,D, Cr ∈ [0, 1] the Crossover constant

and rand j ∈ [0, 1) a random number.

In Selection phase the new trial individual replaces

Xgcin if it attains a smaller fitness value. The algorithm iter-

ation terminates when a stopping criterion, such as a max-

imum number of generations is reached or VTR criterion

is satisfied [9].

The numerical experiments presented in [2] revealed

that the trial individual the ω
g
cin should be considered hav-

ing a linear combination of both Xgcin and Xgbest. The bigger

the participation of the best individual is, the less genera-

tions we need to have an acceptable solution but we loose

on the percentage of successes. Whereas, the Strategy 6,

with a randomly in [0, 1] (as suggested in the literature)

choice of the contribution of Xgcin and Xgbest in the linear

combination, proves to be very efficient.

Table 2. Numerical Experiments Results

Strategy % success Mean of Gens

1 or 6 with Fcr = 1 24 21584

3 or 6 with Fcr = 0.8 47 20268

6 with Fcr = 0.2 53 47333

6 with Fcr = 0.5 55 23999

6, random Fcr ∈ [0, 1] 49 24607

6, random Fcr ∈ [0.5, 1] 49 20158

6, random Fcr ∈ [0, 0.5] 56 40496

6, random Fcr ∈ [0.3, 0.7] 54 24972

3 Numerical Experiments and
Conclusions

For the construction of the RK5(4) pair considering the

Table 1 order conditions we have a fitness function

f (x) =

√√√√ 5∑
q=1

λq∑
i=1

(Qqi − ξqi/q!)2 +

4∑
q=1

λq∑
i=1

(Q̂qi − ξqi/q!)2

subject to linear constrains which keep the coefficients of

the method in appropriate limits. In order to construct ef-

fective methods of the desired order as VTR we consider

computer arithmetic epsilon. We set an arbitrary value for

b̂7 and so the dimension of the real precision parameters

D = 27. I We set the population size of the population

NP = 270 and the maximum number of generations equal

to 100000. We experiment with various modifications of

the random choice in Strategy 6. We apply the DE pro-

cedure for 500 times and we record the average number

of convergence of the procedure having reached the de-

sired VTR accuracy and the average number of genera-

tions needed. Our numerical results (See Table 2) reveal

that for both robustness and fast convergence we should

modify Strategy 6 and choose the Fcr randomly in [0.5, 1].
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