

a Corresponding author: punwess.s@student.chula.ac.th

Formalizing Real-Time Embedded System into Promela

Punwess Sukvanich1,a, Arthit Thongtak 1, Wiwat Vatanawood 1
1Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand

Abstract. We propose an alternative of formalization of the real-time embedded system into Promela model. The
proposed formal model supports the essential features of the real-time embedded system, including system resource-
constrained handling, task prioritization, task synchronization, real-time preemption, the parallelism of resources via
DMA. Meanwhile, the model is also fully compatible with the partial order reduction algorithm for model checking.
The timed automata of the real-time embedded system are considered and transformed into Promela, in our approach,
by replacing time ticking into the repeated cycle of the timed values to do the conditional guard to enable the
synchronization among the whole system operations. Our modeling approach could satisfactorily verify a small real-
time system with parameterized dependent tasks and different scheduling topologies..

1 Introduction
In general, the real-time embedded systems are actively
found and exploited in safety critical applications such as
aerospace, automotive and medical industries. However,
for the last two decade, real-time embedded systems and
their applications are expanded to the fast-evolving
industries such as telecommunication, multimedia and
consumer electronics [1]. The environment of those new
coming applications required cost efficient and shorter
time-to-market.

Every real-time embedded system has the same
correctness, safety, and liveness requirements, and it has
to be developed under strict time constraints [2-4]. The
correctness of the time-critical system seriously depends
on the time logical results that are produced within any
exact period [5]. Using run-time testing, simulation, and
traditional verification, are still not sufficient to verify the
correctness of these mentioned systems because infinitely
time of their operations are not covered. Typical real-time
embedded systems are designed to run infinitely. It
means the infinite set of inputs.

The usage of ω-automata is considered to accept these
infinite execution patterns[6]. A ω-automata is known as
a finite state automaton that runs infinitely rather than
finitely [7] and one of the extensions of ω-automata is
timed automata. A timed automaton is a finite automaton
with a finite set of the real-valued clock [7]. It is one of
the most popular methods for modeling a real-time
system. The timed automata approach will be used to
specify, design, and verify the correctness of the real-time
systems [8, 9].

Technically, the real-valued clock in the real-time
embedded system will be replaced with the repeated
cycle of a clock variable which being handling with a

Ticking process. Any model checking tool handling the
finite state automata should accept and do the formal
verification of the mentioned timed automata of the real-
time system[10]. Because of the mentioned techniques,
the use of model checking could replace simulation or
run-time testing on the actual system[1].

2 Background
In a real-time system, there is two type of tasks. First, a
periodic task required a strict timing requirement. This
task has a severe constraint that the task has to execute
periodically at the precise time. The second ones are the
event-based tasks which are less strict to the timing
requirements. The execution of the event based tasks
could be delayed in case the expected resources are not
available. A system is called hard real-time system when
it consists of at least one periodic task. In a hard real-time
system, tasks have to satisfy the strict timing constraint.
Each task will have the variation of execution time
depending on its initial state, input data, and system
environment. The set of all possible execution path has to
be computed and expectedly verified to assure the
correctness of its timing constraints.

Timing analysis is one of the key methods to detect
problems. Timing analysis is one of the key methods to
detect problems and is used to determine the maximum
periods of each task on its execution times. The duration
of execution time depends on the execution path. If the
system control flow is straightforward, the timing
analysis will easily perform. The task relationship could
be a dependency. A dependent task and dynamic
scheduling cause the timing analysis more complicated.
In practice, the control flow would depend on the state
and hard or else it is impossible to be determined [11].

 DOI: 10.1051/
C© Owned by the authors, published by EDP Sciences, 2015

/

0 0 (2015)
201conf

Web of Conferences
5

MATEC
atecm

,
3

53

5
3

0 03
0
0
3
3

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits
distribution, and reproduction in any medium, provided the original work is properly cited.

�������	
�������

Article available at http://www.matec-conferences.org or http://dx.doi.org/10.1051/matecconf/20153503003

http://www.matec-conferences.org
http://dx.doi.org/10.1051/matecconf/20153503003

MATEC Web of Conferences

3 Literature Review of Implementation
of the Real-time System in Promela.
Promela is a process modeling language introduce in [6,
12, 13]. It was used to model the logic of parallel
systems. Among the processes, they communicate with
buffered message exchanges or rendezvous operations
and shared global variables. SPIN is an explicit model
checker for Promela. SPIN verifies a Promela model to
ensure correctness using LTL formulas or never claims.
There are several works of implementation of timed
automata into Promela such as mentioned in [14-16]. A
time slice defined as tick representing a granule duration
of real-valued process time in the real-time systems are
proposed in [14, 16]. A variable called tick is defined as
the time index using a positive integer. The hard real-time
system requires any task to operate at any particular value
of tick. The process prioritization was implemented for
the real-time system as well such as in [14]. . It is also a
built-in feature in SPIN distribution 6.2.0. The higher
priority process always takes over lower priority unless it
is blocked [14]. Unfortunately, it is not compatible with
the Partial Order Reduction (POR). Whenever POR is
used, the process priority will be disabled. The POR
algorithm is the primary strength of the SPIN model
checker [17], especially for the discrete timed model.
Without the POR, it is almost impossible to verify full
state space and handle with the state space explosion.

In SPIN, the execution of statements is
asynchronous and interleaved. To model real-time system
that required a synchronization might have a problem
with a task that can accidentally execute before its time
slice. In [16, 17] , the timeout statement that is a
predefined statement in SPIN is used to create the
synchronization of tasks without using the rendezvous
operation.

4 Our Approach of Formalizing the Real-
Time Embedded System

Several required features of the real-time embedded
system are preemptive, priority based scheduling, and
resources management. The use of logic blocking is the
easiest way and very lightweight to cope with the
prioritization feature. The most valuable resource for the
real-time system is the computation because of the lack
of processing power and the bottleneck of the
transmission between them via buses. Fig. 1 shows our
case study of a health tracker device. The device is a
heart rate tracker implemented by a small real-time
embedded system with a small display where health
information is displayed.

Figure 1. The diagram of the case-study system.

The device consists of the low-power 16-bit
microcontroller. The microcontroller has I2C and SPI
peripheral buses that are used to interface with other
peripherals. The device is not safety critical, but it is still
useful for a case study. This device wakes up and has the
CPU burst for a short duration at 20Hz, which is a timing
period of 50 milliseconds. The device is defined as a hard
real-time system because it consists of periodic tasks.

5 Implementation
We create a set of parameters of task model that can
represent the required parameter from the real-time
embedded system. The required parameters are a name,
resource requirement, type of task, execution duration,
state phase, task priority and task period. In Table 1. we
create a set of parameters of case study device that can
represent the required processes.

Table 1. Task parameters in model.
Name CPU I2C SPI Periodic Duration Priority

Wear O True 5 10
Act O O True 7 9

RTC O O True 8 8
Samp O O True 7 7
Power O O True 2 4
HRCal O False 2 4

HR O False 6 3
Flash O False 5 5
Pedo O False 2 4
Dsp O False 5 4

5.1 Real-valued time

We define the real-valued clock of the system as a
synchronization primitive as well as resource
management. The one millisecond time slice is defined
and a tiny portion of time which is smaller than one
millisecond will be rounded up to one millisecond. We
define a minor loop that has 50 ticks in a total of 50
milliseconds. For each loop, the microcontroller would
wake up from sleep and then process any required task
and then goes deep sleep again. A tick counter will start
from the first tick (tick=0) and is increased by one until
its 50th tick (tick=49), the tick counter will reset to 0 (line
9 of fig.2) and repeatedly start again as mentioned. Our
proposed model could reduce the number of states to four
states per tick. The total state space will be then reduced
as well as its complexity.

1
2
3
4
5
6
7
8
9
10
11
12

#define isMyPhase (((Tick - (myTask.phase)) % myTask.period == 0))
mtype = {Open, Close, Execute, Schedule}
proctype Ticking() {
do::((ClockState == Open)&& timeout) ->ClockState=Schedule;
 ::((ClockState == Schedule)&& timeout) ->ClockState = Close;
 ::((ClockState == Close)&& timeout) ->ClockState = Execute;
 ::((ClockState == Execute) && timeout) ->ClockState = Open;
 Tick++; /* advance to next tick */
 if :: (Tick > (TotalTickPerLoop)) -> Tick = 0;
 :: else;
 fi; /* implement reset all resources here */
od;}

Figure 2. Promela model of Tick process

03003-p.2

ICMCE 2015

5.2 Ticking process

We propose an alternative of Ticking process, which
handles the clock mechanism of the system. A Ticking
process contains the infinitely often execution of
changing of the ClockState variable. The ClockState
contains four states that are Open, Schedule, Close, and
Execute (shown at line 4-7 of Fig. 2). Every task in the
real-time system uses ClockState to synchronize
themselves with another task. The timeout statement
should appear between each clock state to ensure that
every task will work under the same ClockState. The tick
could only be proceed if all four state values of
ClockState are sequentially parsed.

5.2.1 Open State of ClockState

The first state value of our clock mechanism is defined as
an Open state. The Open state allows all tasks in the
system to check if the current tick is their arrival time or
not. Initially, every task stays waiting until the guard
condition called isMyPhase is true shown at line 9 in
Fig.4. The guard condition will block any particular task
that has unsatisfied values of the predefined parameters
‘period’ and ‘phase’. An event task is setting period to 0
(period=0) and it can be active at any time slice if
available. A task arrival time can start at any tick possible
by setting phase parameter. For example, a periodic task
that executes every ten ticks if the period parameter is set
to 10 (period=10). Any task that would ready to execute
(isMyPhase=true) if its arrival time will be setting to
active (isTaskActive=true) shown at line 9 of Fig. 4).

Figure 3. State machine of Task

An Active task will request a resource every time when
ClockState is in Open state even the resource is not
available. Active task can request resource by setting its
is_Requested flag. If there is more than one active task in
the same time slice, each task will execute concurrently.
Instead of using a loop for checking every task. We use
timeout in every ClockState to wait till every Active task
requesting their resources. After no more request from
any task, the ClockState advances to the next state. With
the timeout statement, it is guaranteed that there is no
Active task that have requested the resources left. This
statement will ensure that every task can request resource

on their ticks precisely before ClockState to Schedule
state.

5.2.2 Schedule state of ClockState

The second state value of ClockState, where the
scheduler collects all the resources request from every
active task. In our implementation, we are using fixed
rate priority preemptive scheduling topology. Each task
has predefined priority. A higher priority task will always
get the resources. Tasks that have been requesting the

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

proctype CreateTask(taskdef myTask){
int cycleCount = 0; /* Cycle counter */
int durationCount = 0; /* Duration counter for task */
bool isTaskActive = false; /* Guarding for this task if not Active yet*/
mtype RES[MaxResource];
WAIT: /* When finish every tick, task will wait here */
do
::((!isTaskActive)&&(GlobalClockState==Open)
 &&(isMyPhase))->ACTIVE: isTaskActive=true;
::((isTaskActive)&&(GlobalClockState==Open)
 &&(!Tlist[myTask.my_type].is_Requested))->
 TaskArray[myTask.my_type].is_Requested = true;
REQUEST:
::((isTaskActive)&&(GlobalClockState == Schedule))->
 /* Implement Scheduler
here*/ ::((isTaskActive)&&(GlobalClockState==Close)
 &&(!isLessPriority(myTask.my_type))
 &&(Selected == none)
 &&(TaskArray[myTask.my_type].is_Requested))->
 SELECTING: Selected = myTask.my_type;
:: ((isTaskActive)
 &&(GlobalClockState == Execute)
 &&(TaskArray[myTask.my_type].is_Requested)
 &&(Selected == myTask.my_type))->
EXCUTION: TaskArray[myTask.my_type].is_Requested = false;
 durationCount++; /* Increase task execution duration */
 if :: (durationCount >= myTask.duration)->durationCount=0->
 goto TaskIsFinished;
 :: else->skip;
 fi;
 HighestGetResource = true;
 ::((GlobalClockState == Excecute)&&(isTaskActive)
 &&(TaskArray[myTask.my_type].is_Requested)
 &&(HighestGetResource)&&(CheckMyResource))->
Tlist[myTask.my_type].is_Requested = false;
Tlist[myTask.my_type].is_Scheduled = false;
 If ::(Resource[0].owner==_IDLE_ && myTask.isreqRES0)
 ->Resource[0].owner=myTask.my_type;
 :: else;
 fi;
 if ::(Resource[1].owner==_IDLE_ && myTask.isreqRES1)
 ->Resource[1].owner=myTask.my_type;
 :: else;
fi;
if ::(Resource[2].owner==_IDLE_ && myTask.isreqRES2)
 ->Resource[2].owner=myTask.my_type;
 :: else;
fi; durationCount++;
if :: (durationCount >= myTask.duration)->durationCount=0
 ->goto TaskIsFinished;
 :: else->skip;
fi;
GlobalClockState == C_Open;
 od;
TaskIsFinished: isTaskFinished[myTask.my_type] = true;
 durationCount = 0;
 isTaskActive = false;
 if ::(myTask.is_periodic)->cycleCount=0;
 goto WAIT; /* Run infinitely eventually */
 ::((cycleCount+1) < myTask.cycle)->
 cycleCount++;printf("cycle count %d\n",cycleCount); goto WAIT;
 ::else->cycleCount=0;
 fi;
DESTROY:
}

Figure 4. Promela model of Task process

03003-p.3

MATEC Web of Conferences

resources, have to check if they have right to hold the
resources by checking isLessPriority flag. Task with the
same level of priority will have equal chance to capture
resources non-deterministically. Task with the highest
priority will be selected and granted the right to hold the
resource for a tick. Another supported scheduling
topology such as EDF (Earliest Deadline First), DM
(Dead-line monotonic) for example (shown in fig.5).

1
2
3
4
5
6
7
8

inline Scheduler_EDF(TaskType){
if ::(!iMoreDeadline(TaskType))-> Selected = myTask.my_type;
 ::else->skip;
fi; }
inline Scheduler_DM(TaskType){
if ::(!iMoreDuration(TaskType))-> Selected = myTask.my_type;
 :: else->skip;
fi;}

Figure 5. Promela model of scheduling Topology macros

5.2.3 Close state of ClockState

The third state value of ClockState, which will select the
task that have the right to hold the resource. The Selected

task will get the resource. If no scheduling topology is
presented, tasks have to check if they have right to hold
the resources by checking isLessPriority flag. Task with
the same level of priority will have equal chance to
capture resources non-deterministically. Task with the
highest priority will be selected (at line 17 of Fig.4) and
granted the right to hold the resource for a tick.

5.2.4 Execute state of ClockState

The fourth state value of ClockState. The resource will be
registered to each selected task (at line 38 ,42 ,46 of Fig.4)
The task execution duration will be decreased. Then, all
resources are cleared for the next tick. The finished task
would be destroyed if it is not a periodic task.

5.3 Priority and rendezvous operation

In the real-time system, the priority scheduling is used to
manage timing constraint. If two or more tasks have
active and request to hold the resources for execution. A
priority is used to justify a right to access the resource.
We propose the implementation of priority concept as a
positive integer variable. In the Close state, each task
has !isLessPriority guard (at line 17 of Fig.4) which will
block the task from its execution. In Fig.6, the
isLessPriority guard used to compare its task priority
with another task and result in false only if a top priority
task is selected. Priority variable could be changed during
execution that allows us to implement the most
complicated schedule. Only the active task will be
checked. All of the active tasks will request the resource
from the Open state.

1
2
3

#define TASK1isLessPriority
((TASK1.Priority<TASK2.Priority) && TASK1.is_Requested)
|| ((TASK1.myPriority<TASK3.myPriority)&&TASK3.is_Requested)
|| ((TASK1.myPriority<TASK4.myPriority)&&TASK4.is_Requested))

Figure 6. Promela model of isLessPriority macro

5.4 Resources

Each task execution required a particular resource. We
propose the three resource model that are most affect to
the timing constraints. From our model, we define two
different buses for each transmission of I2C and SPI bus.
The task has to hold the resource and execution at the
specific tick for a specific duration to complete execution
(at line 17 of Fig.4).

5.5 Pre-emptive

We design the model to support preemption of a task. In a
periodic task, preemption could help task to operate
within the deadline. The task with higher priority could
preempt the current task at any tick. To prevent the task
from preempting, we can define the schedule to increase
the priority of the currently executing task to highest. In
fig.7, we define process P2 as a high priority process that
can preempt another task during execution. The process
P2 preempts process P1 during the execution. After
process P2 ends, then the process P1 can proceed to hold
the resource and resume its execution.

Figure 7. Timing diagram of preemptiving in model.

5.6 Dependent Task

To model the dependent task, we define a process to
handle the control flow of the system shown in fig.8 Each
feature may require a sequential execution of tasks, for
example, sampling data from the sensor, process the data,
writing a log file in volatile memory, and then record into
non-volatile (flash) memory. The mentioned tasks have to
be processed sequentially during the execution time that
is required different timing requirements (process
duration) and resource requirements (buses). After each
process finishes its execution, the isTaskFinished flag
become true. The scheduler waits for the isTaskFinished

flag from any process. We allow developer to change the
control flow without changing the clock automaton.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

active proctype ControlFlow() {
do
 :: isTaskFinished[Wear]-> isTaskFinished[Wear]=false;
 CreateTask_HR;
 :: isTaskFinished[HR]-> isTaskFinished[HR]=false;
 CreateTask_HRcal;FlashCount++;
 :: isTaskFinished[HRcal]&&FlashCount>=15)->
 isTaskFinished[HRcal]=false;CreateTask_flash; FlashCount =0;
 :: isTaskFinished[Samp]-> isTaskFinished[Samp]=false;
 CreateTask_pedo;
 :: isTaskFinished[pedo]-> isTaskFinished[pedo]=false;
 FlashCount++;CreateTask_Act;HRDisplay++;
 :: (isTaskFinished[Act]&&HRDisplay>=20)->
 isTaskFinished[Act]=false;CreateTask_Dsp;HRDisplay = 0;
od;

03003-p.4

ICMCE 2015

Figure 8. Promela model of ControlFlow process

6 Result

Using our formalization approach, we conducted 10 small
experimental tasks consisting of five periodic tasks and
five-parameter dependent tasks. These tasks were
designed to infinitely run as reactive system.

Table 2. Resulting Verification Criteria
Topology State Depth Time(sec) Mem(MB)

Fixed 195,569 91,906 2.13 283.996
EDF 90,968 94,533 0.958 202.113
DM 439,682 93,178 4.44 465.552

Our verification experiments used SPIN model checker
version 6.4.3, running on a typical personal computer
equipped with Intel I7 2.8 GHz. 12GB of RAM. In Table
2, the resulting verification criteria were evaluated for
three types of scheduling topologies, the fixed rate
priority, and the earliest deadline first, and the deadline
monotonic. The resulting figures were quite satisfied and
showed that our formal verification modelling approach
could cope with the problems regarding the timing
correctness and the memory usages.

7 Conclusion and Future work
In our approach, we formalize the model of the timing
behavior of the real-time embedded system into Promela.
The timed automata are considered to formalize the
infinite behavior of the system into finite state automata.
Our formal model represents the four-valued clock states
and ticking process which scope the timing requirements
of the real-time system. Our model able to handle all
required feature to verify the correctness of our case
studies real-time embedded device. The SPIN model
checker can verify the correctness of scheduler that
contain seven periodic tasks and several dependent tasks
with priority feature in a few minutes. In our next
implementation, we are going to implement more
scheduling topology into the model to increase ease of
use for the developer to verify their task and task
scheduler.

References
1. Sifakis, J., Modeling Real-Time Systems-Challenges

and Work Directions, in Proceedings of the First

International Workshop on Embedded Software.
(2001), Springer-Verlag. p. 373-389.

2. Dill, D.L., Timing Assumptions and Verification of

Finite-State Concurrent Systems, in Proceedings of

the International Workshop on Automatic

Verification Methods for Finite State Systems. 1990,
Springer-Verlag. p. 197-212.

3. Ostroff, J.S., Temporal logic for real time systems.
(1989): John Wiley & Sons, Inc. 209.

4. Henzinger, T.A., Z. Manna, and A. Pnueli, Temporal

proof methodologies for real-time systems. (1991),
Stanford University.

5. Baier, C. and J.-P. Katoen, Principles of Model

Checking (Representation and Mind Series). (2008):
The MIT Press. 975.

6. Holzmann, G., The SPIN Model Checker: Primer

and Reference Manual. (2011): Addison-Wesley
Professional. 608.

7. Thomas, W., Automata on infinite objects, in
Handbook of theoretical computer science (vol. B), L.
Jan van, Editor. (1990), MIT Press. p. 133-191.

8. Alur, R. and D.L. Dill, Automata for modeling real-

time systems, in Proceedings of the seventeenth

international colloquium on Automata, languages

and programming. (1990), Springer-Verlag New
York, Inc.: Warwick University, England. p. 322-335.

9. Alur, R. and D.L. Dill, A theory of timed automata.

Theor. Comput. Sci., (1994). 126(2): p. 183-235.
10. Bouyer, P., et al., Timed Modal Logics for Real-Time

Systems. J. of Logic, Lang. and Inf., (2011). 20(2): p.
169-203.

11. Wilhelm, R., et al., The worst-case execution-time

problem—overview of methods and survey of

tools. ACM Trans. Embed. Comput. Syst., (2008).
7(3): p. 1-53.

12. Holzmann, G.J., Design and validation of computer

protocols. (1991): Prentice-Hall, Inc. 500.
13. Holzmann, G.J., Design and validation of protocols:

a tutorial. Comput. Netw. ISDN Syst., (1993). 25(9):
p. 981-1017.

14. Mihai Florian, E.G., Gerard Holzmann. Logic Model

Checking of Time-Periodic Real-Time System. in
Aerospace 2012 Conference. (2012).

15. Tripakis, S. and C. Courcoubetis, Extending Promela

and Spin for Real Time, in Proceedings of the

Second International Workshop on Tools and

Algorithms for Construction and Analysis of Systems.
(1996), Springer-Verlag. p. 329-348.

16. Bosnacki, D. and D. Dams, Integrating Real Time

into Spin: A Prototype Implementation, in
Proceedings of the FIP TC6 WG6.1 Joint

International Conference on Formal Description

Techniques for Distributed Systems and

Communication Protocols (FORTE XI) and Protocol

Specification, Testing and Verification (PSTV XVIII).
(1998), Kluwer, B.V. p. 423-438.

17. Bosnacki, D., Partial Order Reduction in Presence

of Rendez-vous Communications with Unless

Constructs and Weak Fairness, in Proceedings of the

5th and 6th International SPIN Workshops on

Theoretical and Practical Aspects of SPIN Model

Checking. (1999), Springer-Verlag. p. 40-56.

03003-p.5

