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Abstract. We propose an alternative of formalization of the real-time embedded system into Promela model. The 
proposed formal model supports the essential features of the real-time embedded system, including system resource-
constrained handling, task prioritization, task synchronization, real-time preemption, the parallelism of resources via 
DMA. Meanwhile, the model is also fully compatible with the partial order reduction algorithm for model checking. 
The timed automata of the real-time embedded system are considered and transformed into Promela, in our approach, 
by replacing time ticking into the repeated cycle of the timed values to do the conditional guard to enable the 
synchronization among the whole system operations. Our modeling approach could satisfactorily verify a small real-
time system with parameterized dependent tasks and different scheduling topologies..  

1 Introduction   
In general, the real-time embedded systems are actively 
found and exploited in safety critical applications such as 
aerospace, automotive and medical industries. However, 
for the last two decade, real-time embedded systems and 
their applications are expanded to the fast-evolving 
industries such as telecommunication, multimedia and 
consumer electronics [1]. The environment of those new 
coming applications required cost efficient and shorter 
time-to-market.  

Every real-time embedded system has the same 
correctness, safety, and liveness requirements, and it has 
to be developed under strict time constraints [2-4]. The 
correctness of the time-critical system seriously depends 
on the time logical results that are produced within any 
exact period [5]. Using run-time testing, simulation, and 
traditional verification, are still not sufficient to verify the 
correctness of these mentioned systems because infinitely 
time of their operations are not covered. Typical real-time 
embedded systems are designed to run infinitely. It 
means the infinite set of inputs.  

The usage of ω-automata is considered to accept these 
infinite execution patterns[6]. A ω-automata is known as 
a finite state automaton that runs infinitely rather than 
finitely [7] and one of the extensions of ω-automata is 
timed automata. A timed automaton is a finite automaton 
with a finite set of the real-valued clock [7]. It is one of 
the most popular methods for modeling a real-time 
system. The timed automata approach will be used to 
specify, design, and verify the correctness of the real-time 
systems [8, 9].  

Technically, the real-valued clock in the real-time 
embedded system will be replaced with the repeated 
cycle of a clock variable which being handling with a 

Ticking process. Any model checking tool handling the 
finite state automata should accept and do the formal 
verification of the mentioned timed automata of the real-
time system[10]. Because of the mentioned techniques, 
the use of model checking could replace simulation or 
run-time testing on the actual system[1].  

2 Background 
In a real-time system, there is two type of tasks. First, a 
periodic task required a strict timing requirement. This 
task has a severe constraint that the task has to execute 
periodically at the precise time. The second ones are the 
event-based tasks which are less strict to the timing 
requirements. The execution of the event based tasks 
could be delayed in case the expected resources are not 
available. A system is called hard real-time system when 
it consists of at least one periodic task. In a hard real-time 
system, tasks have to satisfy the strict timing constraint. 
Each task will have the variation of execution time 
depending on its initial state, input data, and system 
environment. The set of all possible execution path has to 
be computed and expectedly verified to assure the 
correctness of its timing constraints.  

Timing analysis is one of the key methods to detect 
problems. Timing analysis is one of the key methods to 
detect problems and is used to determine the maximum 
periods of each task on its execution times. The duration 
of execution time depends on the execution path. If the 
system control flow is straightforward, the timing 
analysis will easily perform. The task relationship could 
be a dependency. A dependent task and dynamic 
scheduling cause the timing analysis more complicated. 
In practice, the control flow would depend on the state 
and hard or else it is impossible to be determined [11].  
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3 Literature Review of Implementation 
of the Real-time System in Promela. 
Promela is a process modeling language introduce in [6, 
12, 13].  It was used to model the logic of parallel 
systems. Among the processes, they communicate with 
buffered message exchanges or rendezvous operations 
and shared global variables. SPIN is an explicit model 
checker for Promela. SPIN verifies a Promela model to 
ensure correctness using LTL formulas or never claims. 
There are several works of implementation of timed 
automata into Promela such as mentioned in [14-16]. A 
time slice defined as tick representing a granule duration 
of real-valued process time in the real-time systems are 
proposed in [14, 16]. A variable called tick is defined as 
the time index using a positive integer. The hard real-time 
system requires any task to operate at any particular value 
of tick. The process prioritization was implemented for 
the real-time system as well such as in [14]. . It is also a 
built-in feature in SPIN distribution 6.2.0. The higher 
priority process always takes over lower priority unless it 
is blocked [14]. Unfortunately, it is not compatible with 
the Partial Order Reduction (POR). Whenever POR is 
used, the process priority will be disabled. The POR 
algorithm is the primary strength of the SPIN model 
checker [17], especially for the discrete timed model. 
Without the POR, it is almost impossible to verify full 
state space and handle with the state space explosion.  

In SPIN, the execution of statements is 
asynchronous and interleaved. To model real-time system 
that required a synchronization might have a problem 
with a task that can accidentally execute before its time 
slice. In [16, 17] , the timeout statement that is a 
predefined statement in SPIN is used to create the 
synchronization of tasks without using the rendezvous 
operation. 

4 Our Approach of Formalizing the Real-
Time Embedded System 

Several required features of the real-time embedded 
system are preemptive, priority based scheduling, and 
resources management. The use of logic blocking is the 
easiest way and very lightweight to cope with the 
prioritization feature. The most valuable resource for the 
real-time system is the computation because of the lack 
of processing power and the bottleneck of the 
transmission between them via buses. Fig. 1 shows our 
case study of a health tracker device. The device is a 
heart rate tracker implemented by a small real-time 
embedded system with a small display where health 
information is displayed.

Figure 1. The diagram of the case-study system.

The device consists of the low-power 16-bit 
microcontroller. The microcontroller has I2C and SPI 
peripheral buses that are used to interface with other 
peripherals. The device is not safety critical, but it is still 
useful for a case study. This device wakes up and has the 
CPU burst for a short duration at 20Hz, which is a timing 
period of 50 milliseconds. The device is defined as a hard 
real-time system because it consists of periodic tasks. 

5 Implementation 
We create a set of parameters of task model that can 
represent the required parameter from the real-time 
embedded system. The required parameters are a name, 
resource requirement, type of task, execution duration, 
state phase, task priority and task period. In Table 1. we 
create a set of parameters of case study device that can 
represent the required processes. 

Table 1. Task parameters in model. 
Name CPU I2C SPI Periodic Duration Priority

Wear O True 5 10
Act O O True 7 9

RTC O O True 8 8
Samp O O True 7 7
Power O O True 2 4
HRCal O False 2 4

HR O False 6 3
Flash O False 5 5
Pedo O False 2 4
Dsp O False 5 4

5.1 Real-valued time 

We define the real-valued clock of the system as a 
synchronization primitive as well as resource 
management. The one millisecond time slice is defined 
and a tiny portion of time which is smaller than one 
millisecond will be rounded up to one millisecond. We
define a minor loop that has 50 ticks in a total of 50 
milliseconds. For each loop, the microcontroller would 
wake up from sleep and then process any required task 
and then goes deep sleep again. A tick counter will start 
from the first tick (tick=0) and is increased by one until 
its 50th tick (tick=49), the tick counter will reset to 0 (line 
9 of fig.2 ) and repeatedly start again as mentioned. Our 
proposed model could reduce the number of states to four 
states per tick. The total state space will be then reduced 
as well as its complexity.  
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#define isMyPhase (((Tick - (myTask.phase)) % myTask.period == 0)) 
mtype = {Open, Close, Execute, Schedule} 
proctype Ticking() { 
do::((ClockState == Open)&& timeout) ->ClockState=Schedule;  
     ::((ClockState == Schedule)&& timeout) ->ClockState = Close;  
     ::((ClockState == Close)&& timeout) ->ClockState = Execute;  
     ::((ClockState == Execute) && timeout) ->ClockState = Open; 
    Tick++; /* advance to next tick  */         
       if  :: (Tick > (TotalTickPerLoop)) -> Tick = 0; 
            :: else; 
       fi;  /*  implement reset all resources here  */ 
od;} 

Figure 2. Promela model of Tick process 
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5.2 Ticking process 

We propose an alternative of Ticking process, which 
handles the clock mechanism of the system. A Ticking 
process contains the infinitely often execution of 
changing of the ClockState variable. The ClockState 
contains four states that are Open, Schedule, Close, and 
Execute (shown at line 4-7 of Fig. 2). Every task in the 
real-time system uses ClockState to synchronize 
themselves with another task. The timeout statement 
should appear between each clock state to ensure that 
every task will work under the same ClockState. The tick 
could only be proceed if all four state values of 
ClockState are sequentially parsed.  

5.2.1 Open State of ClockState 

The first state value of our clock mechanism is defined as
an Open state. The Open state allows all tasks in the 
system to check if the current tick is their arrival time or 
not. Initially, every task stays waiting until the guard 
condition called isMyPhase is true shown at line 9 in 
Fig.4. The guard condition will block any particular task 
that has unsatisfied values of the predefined parameters 
‘period’ and ‘phase’. An event task is setting period to 0 
(period=0) and it can be active at any time slice if 
available. A task arrival time can start at any tick possible 
by setting phase parameter. For example, a periodic task 
that executes every ten ticks if the period parameter is set 
to 10 (period=10). Any task that would ready to execute 
(isMyPhase=true) if its arrival time will be setting to 
active (isTaskActive=true) shown at line 9 of Fig. 4). 

Figure 3. State machine of Task 

An Active task will request a resource every time when 
ClockState is in Open state even the resource is not 
available. Active task can request resource by setting its 
is_Requested flag. If there is more than one active task in 
the same time slice, each task will execute concurrently. 
Instead of using a loop for checking every task. We use 
timeout in every ClockState to wait till every Active task 
requesting their resources. After no more request from 
any task, the ClockState advances to the next state. With 
the timeout statement, it is guaranteed that there is no 
Active task that have requested the resources left. This 
statement will ensure that every task can request resource 

on their ticks precisely before ClockState to Schedule 
state. 

5.2.2 Schedule state of ClockState 

The second state value of ClockState, where the 
scheduler collects all the resources request from every 
active task. In our implementation, we are using fixed 
rate priority preemptive scheduling topology. Each task 
has predefined priority. A higher priority task will always 
get the resources. Tasks that have been requesting the 
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proctype CreateTask(taskdef myTask){ 
int cycleCount = 0;     /* Cycle counter */ 
int durationCount = 0;     /* Duration counter for task */ 
bool isTaskActive = false;  /* Guarding for this task if not Active yet*/ 
mtype RES[MaxResource];  
WAIT:  /* When finish every tick, task will wait here */ 
do 
::((!isTaskActive)&&(GlobalClockState==Open) 
   &&(isMyPhase))->ACTIVE: isTaskActive=true; 
::((isTaskActive)&&(GlobalClockState==Open) 
   &&(!Tlist[myTask.my_type].is_Requested))->        
   TaskArray[myTask.my_type].is_Requested = true; 
REQUEST: 
::((isTaskActive)&&(GlobalClockState == Schedule))->       
     /* Implement Scheduler 
here*/   ::((isTaskActive)&&(GlobalClockState==Close) 
    &&(!isLessPriority(myTask.my_type)) 
    &&(Selected == none)    
    &&(TaskArray[myTask.my_type].is_Requested))-> 
 SELECTING: Selected = myTask.my_type;    
:: ((isTaskActive) 
     &&(GlobalClockState == Execute) 
     &&(TaskArray[myTask.my_type].is_Requested) 
     &&(Selected == myTask.my_type))-> 
EXCUTION:  TaskArray[myTask.my_type].is_Requested = false; 
     durationCount++; /* Increase task execution duration */  
      if :: (durationCount >= myTask.duration)->durationCount=0-> 
             goto TaskIsFinished;  
       :: else->skip; 
       fi;        
       HighestGetResource = true;      
 ::((GlobalClockState == Excecute)&&(isTaskActive)  
   &&(TaskArray[myTask.my_type].is_Requested) 
   &&(HighestGetResource)&&(CheckMyResource))-> 
Tlist[myTask.my_type].is_Requested = false; 
Tlist[myTask.my_type].is_Scheduled = false;    
 If ::(Resource[0].owner==_IDLE_ && myTask.isreqRES0)  
       ->Resource[0].owner=myTask.my_type;  
     :: else; 
 fi;         
 if ::(Resource[1].owner==_IDLE_ && myTask.isreqRES1) 
     ->Resource[1].owner=myTask.my_type;    
    :: else; 
fi;         
if  ::(Resource[2].owner==_IDLE_ && myTask.isreqRES2) 
     ->Resource[2].owner=myTask.my_type;    
     :: else; 
fi;  durationCount++;       
if  :: (durationCount >= myTask.duration)->durationCount=0 
      ->goto TaskIsFinished;     
     :: else->skip; 
fi; 
GlobalClockState == C_Open;    
 od;      
TaskIsFinished:  isTaskFinished[myTask.my_type] = true;  
 durationCount = 0;       
 isTaskActive = false;      
 if ::(myTask.is_periodic)->cycleCount=0;   
     goto WAIT; /* Run infinitely eventually */ 
     ::((cycleCount+1) < myTask.cycle)->  
     cycleCount++;printf("cycle count %d\n",cycleCount); goto WAIT;
     ::else->cycleCount=0;     
 fi;        
DESTROY: 
} 

Figure 4. Promela model of Task process
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resources, have to check if they have right to hold the 
resources by checking isLessPriority flag. Task with the 
same level of priority will have equal chance to capture 
resources non-deterministically. Task with the highest 
priority will be selected and granted the right to hold the 
resource for a tick. Another supported scheduling 
topology such as EDF (Earliest Deadline First), DM 
(Dead-line monotonic) for example (shown in fig.5).  

1 
2 
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inline Scheduler_EDF(TaskType){ 
if ::(!iMoreDeadline(TaskType))-> Selected = myTask.my_type;  
    ::else->skip; 
fi; } 
inline Scheduler_DM(TaskType){  
if ::(!iMoreDuration(TaskType))-> Selected = myTask.my_type;  
    :: else->skip; 
fi;} 

Figure 5. Promela model of scheduling Topology macros 

5.2.3 Close state of ClockState 

The third state value of ClockState, which will select the 
task that have the right to hold the resource. The Selected

task will get the resource. If no scheduling topology is 
presented, tasks have to check if they have right to hold 
the resources by checking isLessPriority flag. Task with 
the same level of priority will have equal chance to 
capture resources non-deterministically. Task with the 
highest priority will be selected (at line 17 of Fig.4) and 
granted the right to hold the resource for a tick. 

5.2.4 Execute state of ClockState 

The fourth state value of ClockState. The resource will be 
registered to each selected task (at line 38 ,42 ,46 of Fig.4) 
The task execution duration will be decreased. Then, all 
resources are cleared for the next tick. The finished task 
would be destroyed if it is not a periodic task.  

5.3 Priority and rendezvous operation 

In the real-time system, the priority scheduling is used to 
manage timing constraint. If two or more tasks have 
active and request to hold the resources for execution. A 
priority is used to justify a right to access the resource. 
We propose the implementation of priority concept as a 
positive integer variable. In the Close state, each task
has !isLessPriority guard (at line 17 of Fig.4) which will 
block the task from its execution. In Fig.6, the 
isLessPriority guard used to compare its task priority 
with another task and result in false only if a top priority 
task is selected. Priority variable could be changed during 
execution that allows us to implement the most 
complicated schedule. Only the active task will be 
checked. All of the active tasks will request the resource 
from the Open state. 

1 
2 
3 

#define TASK1isLessPriority   
((TASK1.Priority<TASK2.Priority) && TASK1.is_Requested)        
|| ((TASK1.myPriority<TASK3.myPriority)&&TASK3.is_Requested) 
|| ((TASK1.myPriority<TASK4.myPriority)&&TASK4.is_Requested)) 

Figure 6. Promela model of isLessPriority macro 

5.4 Resources 

Each task execution required a particular resource. We 
propose the three resource model that are most affect to 
the timing constraints. From our model, we define two 
different buses for each transmission of I2C and SPI bus. 
The task has to hold the resource and execution at the 
specific tick for a specific duration to complete execution 
(at line 17 of Fig.4).

5.5 Pre-emptive 

We design the model to support preemption of a task. In a 
periodic task, preemption could help task to operate 
within the deadline. The task with higher priority could 
preempt the current task at any tick. To prevent the task 
from preempting, we can define the schedule to increase 
the priority of the currently executing task to highest. In 
fig.7, we define process P2 as a high priority process that 
can preempt another task during execution. The process 
P2 preempts process P1 during the execution. After 
process P2 ends, then the process P1 can proceed to hold 
the resource and resume its execution.  

Figure 7. Timing diagram of preemptiving in model. 

5.6 Dependent Task 

To model the dependent task, we define a process to 
handle the control flow of the system shown in fig.8 Each 
feature may require a sequential execution of tasks, for 
example, sampling data from the sensor, process the data, 
writing a log file in volatile memory, and then record into 
non-volatile (flash) memory. The mentioned tasks have to 
be processed sequentially during the execution time that 
is required different timing requirements (process 
duration) and resource requirements (buses). After each 
process finishes its execution, the isTaskFinished flag 
become true. The scheduler waits for the isTaskFinished

flag from any process. We allow developer to change the 
control flow without changing the clock automaton.  
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active proctype ControlFlow() { 
do  
 :: isTaskFinished[Wear]-> isTaskFinished[Wear]=false;        
    CreateTask_HR;     
 :: isTaskFinished[HR]-> isTaskFinished[HR]=false;    
    CreateTask_HRcal;FlashCount++;     
 :: isTaskFinished[HRcal]&&FlashCount>=15)->      
    isTaskFinished[HRcal]=false;CreateTask_flash;  FlashCount =0; 
 :: isTaskFinished[Samp]-> isTaskFinished[Samp]=false;   
     CreateTask_pedo;       
 :: isTaskFinished[pedo]-> isTaskFinished[pedo]=false;   
     FlashCount++;CreateTask_Act;HRDisplay++; 
 :: (isTaskFinished[Act]&&HRDisplay>=20)->     
    isTaskFinished[Act]=false;CreateTask_Dsp;HRDisplay = 0;  
od; 
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Figure 8. Promela model of ControlFlow process 

6 Result 

Using our formalization approach, we conducted 10 small 
experimental tasks consisting of five periodic tasks and 
five-parameter dependent tasks. These tasks were 
designed to infinitely run as reactive system.    

Table 2. Resulting Verification Criteria 
Topology State Depth Time(sec) Mem(MB) 

Fixed 195,569 91,906 2.13 283.996 
EDF 90,968 94,533 0.958 202.113 
DM 439,682 93,178 4.44 465.552 

Our verification experiments used SPIN model checker 
version 6.4.3, running on a typical personal computer 
equipped with Intel I7 2.8 GHz. 12GB of RAM. In Table 
2, the resulting verification criteria were evaluated for 
three types of scheduling topologies, the fixed rate 
priority, and the earliest deadline first, and the deadline 
monotonic. The resulting figures were quite satisfied and 
showed that our formal verification modelling approach 
could cope with the problems regarding the timing 
correctness and the memory usages. 

7 Conclusion and Future work 
In our approach, we formalize the model of the timing 
behavior of the real-time embedded system into Promela. 
The timed automata are considered to formalize the 
infinite behavior of the system into finite state automata.
Our formal model represents the four-valued clock states 
and ticking process which scope the timing requirements 
of the real-time system. Our model able to handle all 
required feature to verify the correctness of our case 
studies real-time embedded device. The SPIN model 
checker can verify the correctness of scheduler that 
contain seven periodic tasks and several dependent tasks 
with priority feature in a few minutes. In our next 
implementation, we are going to implement more 
scheduling topology into the model to increase ease of 
use for the developer to verify their task and task 
scheduler. 
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